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ABSTRACT

Use of an inductive processor to convert example-
solutions into implied logic resulted in errors-of-omission no
different from that which occurs with use of program code;
however, such a technique provided a significant reduction
in errors-of-commission. Feedback-aids in conjunction with
example-solutions enabled the programmer to engage in more
complex problems with few errors of commission; those aids,
to be most useful, need to include the implied logic. The
feedback-aids that were optimal for the initial example-
solutions were not suitable for the revision of incorrect
example-solutions. In the population of programmers who
participated in these experiments, the number of programming
languages and the number of operating systems that the individual
knew were established as the best predictor-s of success in
developing example-solutions, as well as for writing program
code.
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INTRODUCTION

The software science literature is replete with descri-
ptions of "improved" products on all levels: requirements-speci-
fication aids, programming languages, programming tools, design
methodologies, and test strategies that are designed not only to
improve the speed of producing computer programs, but also to
improve their correctness and completeness. A similar state-
ment can be made f~j' systems designed to aid the computer user,
including users of C systems. Typically, the "improved" pro-
duct is designed to automate a process previously performed by
a user and, thus, to improve overall performance by simplifying
the user's task. While some features of the new systems, taken
out of the context of the other parts of the system, may appear
to be useful, those same features may be not helpful or may be
even harmful in the total system. For instance, new programming
languages are developed with the goal of automating certain func-
tions, resulting in a "simplier" system which is intended to be

easier to use. But system simplicity by that measure alone is
not specific enough to insure that the user can work more rapidly
and with fewer errors. More detailed specifications of the
useful features of a system based on experimental results are
necessary in order to provide performance-based data for designing
new systems.

An essential step in the development of a correct com-
puter program is the correct and complete specification of the
problem-solution to be implemented by the program. Numerous
software engineering papers and texts point out that errors in

specification of the problem-solution are propagated throughout
the subsequent program development steps and, as a result, are
difficult to detect and expensive to correct - if, in fact,the errors
are detected. As discussed in a related technical report (Con-

nelly, Johnson, Comeau, 1981 ), considerable efforts have been C'
made in software engineering, design methodologies, programming
languages, automatic Droarammina. and Orocram-test and validation
procedures to provide aids for improved programs. While these
efforts have produced aids and procedures which generally have
resulted in improved programs, a serious difficulty in developing

..
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software aids is that, before a particular aid has been developed,
its value is unknown. This value can only be assessed after the
aid has been developed and after users have become proficient
in handling it. Thus aid-development becomes largely a "cut

and try" process where aid designers attempt to produce solu-
tions; within their own area(s) of expertise.

But aids are frequently developed without the benefit of
data regarding how well a human user will be able to perform .-

with the aids. A fundamental problem in software development
in general and specification bf accurate and complete solutions
specifications in particular is how to measure the ability of an
individual to correctly accomplish each step of the task assigned to
him. For instance, we should like to know for each task step
the likelyhood of each type of error and the time required to
complete the task. Further, w,,e should like to know the effect
of problem-complexity and certain aid-types on error-rates
and completion-times. With this information, aid designers
should be able to make informed choices regarding the design
of interface-functior,4 and the specification of machine and user
tasks.

The research reported here is the second phase of a
series of experiments to investigate the ability of individuals
to correctly and accurately specif-y p roblem-s olut ions when
working with various aid-designs at various, levels of problem-
complex ity. The first phase of the research was reported in
Connelly, Johnson, Comeau (1981), in which Experiments 1
and 2 were described and their results evaluated. Specifically,
Experiments 1 and 2 investigated the ability of expert pro-
grammers and bookkeepers/accountants who were not expert
programmers to develop example-solutions for a hypothetical
Navy task force problem. The ability of the participants to
develop example-solutions was evaluated as a function of the
participants' background and experience, the complexity of the
problem to be solved, and the level of process;ing provided by
the computer. The problems used in the experiments reported
here were identical to those used in Experiments 1 and 2.

Several results of the first two experiments were used
in the subsequent experiments. First, as expected, more
errors occurred during work on the more complex problems.

* Problem complexity and generalization of data are defined In
a subsequent section titled, "Design of the Experiment".

2-



However, the processing level, or generalization, of

the exarrple-solutions was found to be an important error-
reducing factor, i~e.,, a significant reduzction in errors occurred
when data from example-solutions were processed into a
standard form and presented to the participant.

*A second result, and perhaps the most important, was
that participants in both categories who performed well tended
tO Use a systematic, step-by-step strategy in selecting example-
-olutions. This result,together with the firbi, noted above,
suggested that feedback-aids might be designed to encourage
participants to use a systematic strategy-by processing their
example-solutions and feeding-back the resultant data to
suggest possible additional inputs.

A third result of the first two experiments used in the
subsequent experiments was that the number of years of advanced
education (i.ae, beyond high school) and the number of years of
professional experience were found to be unimportant factors
in predicting performance. As a consequence of this result,
additional demographic factors were evaluated for the partici-
pants in the subsequent experiments in an effort to find important
demographic predictors of performance.

The fourth result used in the subsequent experiments was

the observation that only a few errors-of-commission occurred
during the generation of the example-solutions. The majority of
the errors that did occur were errors -of -omiss ion. This in-
trigueing result influenced the design of Experiment 6, in which
FI-!TrAN IV code was written to solve the prome problems
used in Experiment 1, so that a comparison of error-rates
would be possible.

OV/ERVIEW OF EXPERIMENTS

The results of four experiments are reported here.

Experiments 3 and 4 were designed to investigate the ability
of expert programmers and non-programmers to develop accurate
and complete example-solutions using various feedback aids at

." various levels of problem complexity. Experiment 5 investigated
the capability of expert programmers using these feedback-aids
to revise solution-specificat ons in which various number's of
initially incorrect entries had been introduced.

F( 'TANIVcod ws rite tosoveth rneprblms.3
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Finally, Experiment 6 called upon expert programmers

to develop computer code written in FORTRAN IV for various

levels of probler-complexity and various levels of data-input -

a design intended to be analogous to that used in Experiment 1.

EXPERIMENTS 3 AND 4

Purpose

The purpose of Experiments 3 and 4 was to investigate

the capabilities of programmers and non-programmers to develop
example-solutions for problems using a set of problem-solving aids.

The problems solved were the same as those used in

the previous experiments (1 & 2). Results of Experiments 1 and
2 show that the performance of both programmers and non-pro-
grammers was significantly influenced by the use of systematic,

step-by-step strategies. The participants using systematic
strategies were able to generate more complete example-solutions
than were participants who did not use such strategies. As a
result, the experimental feedback aids for Experiments 3 and 4
were designed to assist participants in developing a systematic
strategy.

Method

The two participant categories were expert-programmers

and experienced bookkeepers/accountants who were not expert
programmers. The selection criteria for establishing whether a
programmer was considered to be an expert-programmer in-

cluded work with multiple languages, production of at least 10,000
lines of code, and experience with multiple computer systems.
Selection criteria for the non-programming category (bookkeeper/
accountant) included four years of schooling or experience in the
bookkeeping/accounting field and not being an expert-programmer

according to the criteria for programmers given above.

Participants were obtained by commercial personnel

organizations which specialize in placing programmers and
bookkeepers/accountants in temporary/permanent positions.
Initial screening of the participants was done by the personnel

agencies in accordance with the selection criteria provided to
them. In addition, due to a low flow rate of participants,

4
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particularly in the bookkeeping/accountlng area, an advertisment
was placed in a local newspaper stating that an evaluation of
computer equipment was being conducted.

Participants who were obtained through agencies were

paid in accordance with the policies of the agencies that obtained
them. 1 he programmers and bookkeepers/accountants

who were obtained through the newspaper ad were paid $13.00
and $7.50 per hour, respectively.

Design of the Experiment

The experiment used a repeated-measures Latin Square

design (Plan *9 cited in Winer, 1971, pp. 727-736). The factors
investigated were:

1. 3 levels of problem complexity, where each level
required a different amount of effort to correctly
specify a problem solution, as measured by

Halstead's E Metric (See Connelly, et al., 1981 ).

2. 3 levels of feedback aids, where each level pre-
sented different amounts of information to be

considered by the participant.

3. 2 participant populations: experienced bookkeeoers/

accountants and expert computer-programmers.

Each factor was fixed, but the grouls(G) and participants within
the groups were random factors. The order of presentation
for each group was randomized.

In Experiments I and 2, three processor levels were

used. These processor levels were a function of the processor
generalization capability. The three processor levels were:

Level B I The MIN and MAX transit- and stationing-
times of input-examples were applied to F__

all ships regardless of type or combination.

Level B2: The MIN and MAX transit-and stationing-
times of input examples were applied to

all ships in each particular combination.

5
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Level 8B The MIN and MAX transit-and stationing-

5 times of input examples were applied only

to each ship type in each combination.

For Experiments 3 and 4, the problem complexity levels were
varied, but the processor level was held constant at Level 8 2

* for all problems.

A pre-test problem was given to every candidate-
participant. It consisted of a low-complexity problem requiring
examples of three different ship-combinations combined with
Feedback Level F (to be described subsequently). When the
pr-test was comp'ieted, the results were evaluated. If the
participant input all three correct ship-combinations, and,

in addition, the minimum and maximum times for transiting
were not equal, and likewise for stationing, the participants
were permitted to continue with the experiment-problems. Other-
wise, the candidate-participants were not permitted to enter the

K experiment.-
Procedure

S Participants were scheduled for either a morning session
beginninig at 8:00 a.m. or an afternoon session beginning at 1:00 p.m.
When a participant arrived, he/she was offered a refreshment and
asked to fill out a bi q raphical questionnaire. The questionnaire veri-
fied that the participant's experience satisfied the experiment entrance-
criteria and obtained additional information regarding the level of the

* - participant's experience in his/her particular field. If the participant's
experience did not satisfy the criteria, he/she was not used in
the experiment. If the participant's background was acceptable,
the purpose of the experiment was explained, and the participant
was provided with a consent form, having been assured that no
personal risk was involved. The participant then signed the
form to indicate that he/she understood these arrangements.

The participant was next seated in the experiment room.
The room was approximately 12 x 16 feet in size, with a video
tape recorder and video monitor located on one table and the

computer and terminal on a separate table. Participants were
asked to make themselves comfortable and to adjusZ the light and
ventilation to their satisfaction.



Instructions for the experiment were presented in two
parts, both of which were on video tape. The first part
(wiecrihed the experiment- problem and gave a method for solving
the problem, including an example- soluti on. The second part

.2 gave instructions on how to enter data into the computer
and included an illustrative problem-solution. Since this
portion of the instructions employed a dynamic display of
the operation of the computer, it cannot be presented here.

After the instructions were presented, the participant
was seated in front of the computer terminal. He/she was
asked to use the manual key pad (consisting of keys labled
0-9 and ENTER). The participant was asked to enter example-
solutions using numbers that corresponded to a ship-list con-
taining various types of ships and their transiting and stationing
times. The participants could refer to this- list at any time
(Ittrin(J the experiment. In addition, a j).-i( of paper and pencils
were provided for notes, calculations, etc. T-hese sheets were
kept in each participant's file for reference.

Participants were told that up to one hour was allotted
for each problem, and that the computer would automatically
stop the problem when the hour was up. Participants were per-
mitted to take a sh-ort break between test-problems if they desired.

S..

* The Task

The experiment task required specification of a logic
for the selection of a hypothetical Navy task force. The task
involved choosing ships from a ship-list which identified the
ship type, the transiting time (i.e., time required for the ship
to get from its present position to the desired site), and
stationing time (i.e., the number of days the ship could remain
on station with available provisions). The participant was
required to specify example-solutions, i.e.*, example ship-
combinations, for each problem worked. To accomplish this,
in addition to specifying ship types, the participant also had to
specify, through the example-solutions, the range of transiting
and stationing times required. For instance, if the required
transiting time was 10 days or less, the participant had to
search the ship-list to find one example ship of an acceptable
type that would satisfy the upper limit (10 days) for transiting

time. To establish the lower limit for the range of acceptable

7



transiting times, the participant had to search the list to
find another ship of an acceptable type with the lowest possible
value for transiting time. Thus, the participant's task was to
form example-solutions which not only contained proper corn-
binations of ship types but also established the desired range
of transiting and stationing times.

A To conceal their relative comple'xities, the experiment
problems were assigned random-number designations. Thus,
Problem *93, shown in Figure 1, was the pre-test problem,
in which there were only 3 possible combinations of ship types.
In Problems #15, *52, and #31, shown in Figures 2, 3, and 4,
there were 6, 9, and 13 possible combinations of ship types,
respectively.

In the context of this report, Problem Level A ,which

denotes the easiest problem-task, corresponds to Probl~m *15
as presented in the experiment. Similarly, Problem Level A2

2acorresponds to Problem #52 as presented in the experiment, and
Problem Level A corresponds to Problem #31.3

Feedback Aids

The participants had various feedback-aids to use. It
should be understood that the aids did not make use of any know-
ledge of the "correct solution" -- in fact, no information re-
garding the correct solution to each problem was entered into .O
the computer for the experiment trials.

Feedback-Aid #1, demonstrated in Table 1, provided a
display of the ship selection logic (SSL) implied by the partici-
pant's example solutions. It included: the ship types, MIN/MA)< for
transiting times, and MIN/MAX for stationing times for each

ship-combination.

Feedback-Aid #2, demonstrated in Table 2, presented
the participant's solutions ordered according to ship type. Each
row shows a combination previously entered by the participant.
The numbers along each row indicate how many ships of each
type were in that combination. This aid was intended to help
the participant to generate all the required combinations by
systematically organizing those previously entered.
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Now suppose the mission has been modified, you

are asked to develop the ship selection logic (for the SSL

subroutine) for the modified mission. The selection criteria

for the task force have been modified to:

1. The ships needed for the task force are:

*" 1 Attack Aircraft Carrier (CVA or CVAN),

And

.0 2 Submarines (SS or SSN),

And

* 4 Destroyers (DD),

And

0 1 OIler (AO)

You must develop logic for each ship combination, as

well as transit and stationing time logic specified by the mission

type. Enter the logic statements for the SSL subroutine into

the computer. Please start now.

Figure 2. Test Problem #15

1'0
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Now suppose the mission has been modified. You

are asked to develop the ship selection logic (for the SSL

subroutine) for the modified mission. The selection criteria

for the task force have been modified to:

1. The ships needed for the task Force are:

* 1 Attack Aircraft Carrier with Nuclear

Propulsion (CVAN),

And

. 2 Guided Missile Cruisers (CG or CGN),

And

0 2 Submarines (SS or SSN'),

And

* 3 Destroyers (DD),

And

* 2 Oilers (AO)

You must develop logic for each ship combinationvas

well as transit and stationing time logic specified by the mission

type. Enter the logic statements for the SSL subroutine into

the computer. Please start now.

Figure 3. Test Problem #52

111



Now suppose the mission has been modified. You

are asked to develop the ship selection logic (for the SSL

subroutine) for the modified mission. The selection cirteria

for the task force have been modified to:

- 1. The ships needed for the task force are:

; l 2 Attack Aircraft Carriers (OVA) or

1 Nuclear Attack Aircraft Carrier (CVAN),

And

0 (2 Submarines (SS or SSN) and 3 Destroyers

(DD) ) or 3 Submarines (SS or SSN) and 2

Destroyers (DD)),

And

-• 1 Oiler (AO).

You must develop logic for each ship combination,as

well as transit and stationing time logic spe(cified by the mission

tkpe. Enter the logic statements for the SSL subroutine into

the computer. Please start now.

Figure 4. Test Problem #31

12
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Table 1

Example of Feedback-Aid #1
Ship Selection Logic (SSL)

No. of Transit Time Stationing Time

Ship Type Ship Type MIN MAX MIN MAX

CVAN 0

OVA 1 1 5 10 50

CA 0

CGN 0

CG 0

DD 4 1 5 10 50

SSN 0

SS 2 1 5 10 50

AO 1 1 5 10 50

TOTAL: 8

CVAN Aircraft Carrier (Nuclear) DO Destroyer

OVA Aircraft Carrier SSN Submarine (Nuclear)

CA Heavy Cruiser SS Submarine

CGN Guided Missle Cruiser (Nuclear) AU Oiler

CG Guided Missle Cruiser

13
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Table 2

Example of Feedback-Aid #2
Ships Ordered According to Ship Type

Number of Ships of Each Ship Type

OVAN OVA CA CGN CG DD SSN SS AO

d 4..

1. 1 0 0 2 0 3 0 2 2 .

2. 1 0 0 0 2 3. 0 2 2

3. 1 0 0 1 1 3 0 2 2

-.

OVAN Aircraft Carrier (Nuclear)
OVA Aircraft Carrier .

SSN Submarine (Nuclear)

SS Submarine
AO Oiler

S1214

2. 1.' 0 0 0 2-. 02

....................................... 1 1 1 3



Feedback-Aid #3 utilized an algorithm to form suggested

next-logical combinations for the participants to consider. Table
3 shows an example of Feedback-Aid #3. Based on the computer's

* inciucative interpretation of the participant's input examples, the
computer identified incomplete ship-combination patterns and dis-
played suggested, further combinations for consideration. For
instance, if the previous inputs had included the combinations

* 2 SS. and 0 SSN, and 1 SS and 1 SSN, then the computer
would suggest 0 SS and 2 SSN. Again, note that the suggested

*combinations developed by the computer were not based on any
*data regarding the correct solution -- the suggestions were made

based only on the detection of incomplete combination -patterns
* in the par'ticipant' s previous inputs.

Three Feedback-Aid Levels were formed for use in
* the experiment: F ,which consisted of Aid #1, i.e., the SSL;

F2 , which consisted of Aids #1 and #2,1 i.e., the SSL and the
"lordered examples inputs"; and F3 , which consisted of Aids *1

* and #3, i.e., the SSL and the "suggested combinations."

Data Entry

Participants used a numeric key pad (0-9 plus the
ENTER key) to enter data into the computer. A participant
could select from the following functions:

Function #1: Change the Page of Example Solutions.
To change the example solution page on the terminal display, a
participant would press Key #1 followed by the ENTER key. The
computer would then request the page number that the participant
wanted to view. The participant would enter the page number,
resulting in a display of the desired page. (A page is a term
referring to the information that is presented on a video monitor
at a given time.) Additional pages were used to present additional
information. In these experiments the pages contained the ship-numbers
for each example-solution. Each page could display eight example-

* solutions and, thus, as each page became full, another page would
be automatically assigned.

Function #2: Enter Example Solution. When the partici-

pant wanted to enter an example -solution, he/she pressed Key #2
and then the ENTER key. The computer then would request the
number of ships in the example. The participant would respond
with the appropriate number and then proceed to enter the ship
ID numbers.

15



Table 3

Example of Feedback-Aid #3
"Next Suggestec Combination"

"*'" Your previous inputs* have suggested the following ship corn-
-~.binations should be considered:

Number of Ships of Each Type

CVAN CVA CA CGN CG DD SSN SS AO

2 0 0 0 0 0 0 2 0

0 2 0 0 0 0 0 0 0

bem

Example Previovs Input

1 Nuclear Carrier-, 1 Air-craft Carrier, 2 Submarines

CVAN Air-craft Carrier (Nuclear)
CVA Aircraft Carr-ier
CA Heavy Cruiser
CGN Guided Missile Cruiser (Nuclear)
CG Guided Missile Cruiser
DD Destroyer
SSN Submarine (Nuclear)
SS Submarine
AO Oiler

16
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Function #3: Change Status of Example Solution.
To change the status of any solution (ACCEPT or CANCEL),
the participant would press Key #3 followed by the ENTER key.
The computer would then request the number of the example-
solution the participant wished to change. Pressing Key #3
changed the status of the example-solution from ACCEPT to
CANCEL or from CANCEL to ACCEPT. As changes were
entered, the computer updated the display to conform to the
new ACCEPT/CANCEL status. Only accepted example-solu-
tions were used in determining the computer's ship selection ..-

logic (SSL). A cancelled example-solution was ignored by
the computer. Any example-solution could be cancelled by
using the procedure described above. Also, a previously
cancelled example-solution could be reintroduced at a later
time by using the same procedure.

Function *4- View the Computer's SSL (Aid *1). To
view the SSL formed by the computer (based on the example-solu-
tions input by the participant), the participant pressed Key #5
followed by the ENTER key. Upon such a request, the computer
would display the various ship-combinations that together formed

the computer's SSL.

Function #6: View Aid #2 (when available). To view
Aid #2,the participant pressed Key #6 followed by the ENTER key.

Function #7: View Aid #3 (when available). To view
Aid #3, the participant pressed Key #7 followed by the ENTER key.

Performance Measures: Absolute and Relative Area Score

Absolute Area-Score, or the Probability of Correctl,

Selecting an Acceptable Ship: A summary performance-measure
was developed to reveal how well each participant solved the
test problems. The measure was constructed by scoring the
MIN/MAX transiting and stationing times for each ship type. As

shown in Figure 5, the range of correct values for the MIN/MAX

transiting and stationing times, which was a function of the ships
on the available ship list, can be viewed as an area in the pro-
blem-space. Every ship of a particular type whose coordinates
fell within that area was acceptable. However, if a participant's
ship-selection logic provided a minimum for either transiting or

stationing time greater than the correct minimum, or if the
maximum for either transiting or stationing was less than the

17



Coordinate o' i ;htj) not -'leL tfed by

A:XSC - _ participant'! !pecifiz. i.ior~ !of te SSL.

MAX SP--- - o

Are o

Stationing (ACS)
Time

Area of
Partic ipant' s

MINSP -Solution
(A S)

MINTC MAXTF' Days

MINTP MAXTO

Tran -. ting Time

(/\CS) Area of correct solution = (MAXTG - MINTC) (MAXSC - MINSO)

(Af-'b) Area of partic-.pant's sulution =(MAXTP-- MIINTP) (MAXSP -

AAINSP)

,MINSP - Minimum Stationing - Participant
MAINSO Minimum Stationing - C~orrect Solution
MINTC - Minimum Transiitinq- Correct Solution
MINTP - Minimum -1 ranstinc. - Participant
MAX SC - Maximum Stationincq - Correct Solution
MAXSP -- Maximum !-,tatironirw(j - Participant
MAXTP - Maximum -1 ransiting - Participant
MAXTC Maximum Transitinq - Correct Solution

Figure 5. Method of Computing Probability

of Acceptable 1,hip I- .If -ion
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correct maximum then the "area" specified by the participant was

5 contained entirely within the "correct area."

As a result, it was possible that a ship with acceptable

coordinates might not be selected according to the SSL specified

by a given participant. The probability that an eligible ship

of a given type (denoted for convenience by the subscript i) would

be selected by the participant's SSL was the ratio of the areas

just described.

That is:
';'- P, = APS

ACS (1)

where: APS = Area of participant's SSL for ship type i.
ACS = Area of correct SSL for ship type I.

The probability of selecting all eligible ships for a

correctly specified combination of ships is the product of the

P. over all the ship types in that combination.

That is:
PC = l P over all i in combination k (2)

where: C represents the k t h correctly specified ship-coin-

. bifation.

For a problem requiring N correct ship-combinations, the average
probability of selecting an eligible ship regardless of type,

which we shall call the "absolute area-score," or simply the

"area-score," is given by:
N

Area-Score =1 PC k

N 1..(3)
k= 1

Thus, the area-score reflects the probability that acceptable ships

were in fact accepted by the SSL specified by the participant.
If a particular ship combination was not specified by the partici-

..-. pant, the corresponding PCk value was zero. Note that the

area-score did. not carry any penalty for specifying incorrect
ship combinations. Note further that the area-score was identical
to Performance Measure 1 used in Experiments 1 and 2.*

*See Connelly, Comeau, & Johnson 1981.

19
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3 Relative Area-Score: Area-score is a function of the
experimental factors and the innate capability of each participant.
A different measure, one that tends to reduce the effect of performance-
variations du.e to variation in participant capability, is called the
"irelative area-score. *It was defined for an experiment problem
as the area-score for that problem minus the area-score for the
participant's pretest problem.

Thus: Relative Area-Score =Area Score on Problem-
Area-Score on Pretest Problem (4)

Procedure Measure

Two participant strategy measures were developed to
test the relationship between the strategy used by participants

N in developing example-solutions and their resulting performance-
scores. One strategy-measure, termed a procedure-measure,
was designed to examine the pattern of choices among the
options available to participants working with the computer.
Referring to Figure 6, it can be seen that once a participant
entered an example -solution into the computer he/she had three
choices for the next step. One choice was to input another ex-
ample-solution. Another choice was to view Aid #1, the com'-
puter ship-selection logic (SSL), to determine the effect of all
example -solutions entered up to that time. The third
possible choice was to view another Aid, #2 or #3, if available.
The relative frequency of these three choices is represented by
the Probabilities P, P2 , and P, respectively.

The value of P reflects the propensity of the participant
to input either a single example -solution or multiple example-
solutions in sequence. If a participant's P1 has a low value-
near 0 - it may be concluded that the participant tends primarily
to input a single example-solution. Such a participant would
typically request a display of the SS L or another aid after each
input. If P Iis very high - near 1 .0 - then the value indicates
that multiple examples were input before proceeding to one of
the other input states.* In fact, the value of P1 provides an-
estimate of the nmean number of times example-solutitons are
input in sequence, as follows:

Mean number of entries in sequence = 1 .(5)

1-P 1

20
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Review of P2

Computer SS L
(Aid #1) 1.00

Enter 1 Example

Solution I

View Aids 1.00
*.' #2 or #3 _ .00

-.: 3

Figure 6. Participant Procedural-Strategy 4
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In a similar way the values of P and P reflect the
propensity of a participant to view the SS2L or otAer aids. A
large value of P 2 , for instance, indicates a strategy of inputting
a single (or only a few) example-solutions and then reviewing
the effect on the SSL. A large value of P indicates a pro-
pensity to input one (or only a few) example-solutions and then
to view Aid #2 or #3. When these aids are unavailable, i.e.,
at Feedback Aid Level F 1 , P3 equals 0.

Since the three alternatives represent all of the

available choices, the sum P1 + P + P will always equal 1.0.
Thus, as P increases, the sum F. + P will automatically

1 2
decrease. As a result, the three variabqes are correlated, and
the three cannot be used together in a regression as independent

variables to investigate the relationship between participant-
strategy and task-performance. But, one probabLlity or possibly
two, if these were shown to be independent, cdctd be used as
independent variables.

Combinational Measure (CM)

Another measure of participant strategy involved the
- nature of the relationship between one example-solution and

the previous solutions input by a participant. In each problem
logical OR conditions were specified which forced a participant
to develop several different ship combinations in order to
completely specify an SSL. Many of these combinations re-

. quired variation within one ship type - submarine, for example,
*" either nuclear (SSN) or non-nuclear (SS) - while others

required variation over more than one type.

If two submarines (SS or SSN) were specified in con-
junction with other ship types, then each specific combination
of the other ships had to be associated with three possible vart-

tions of SSN's and SS's,as follows: I
2 SS and (other ships)OR ~
I SS and 1 SSN and (other ships)

OR "

2 SSN and (other ships)

22
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Similarly, if 3 submarines were specified, then each specific
combination of other ships had to be associated with four varia-
tions of SS's and SSN's, as follows:

"-, 3 SS and (other ships)
OR

2 SS and 1 SSN and (other ships)
OR

I SS and 2 SSN and (other ships)
OR

" 3 SSN and (other ships).

Often, variations (i.e., "OR" conditions) within one ship-type
(e.g., submarine) were specified in combination with variations
(OR conditions) within one or more of another type of ship (e.g.,
nuclear or non-nuclear aircraft carrier). Variations over multiple
ship-types required the generation of numerous combinations, and
it was difficult to generate all such combinations in the absence

• ;of a systematic method.

The combinational strategy-measure was designed to
detect whether a participant tended to construct example-solutions
systematically - i.e., by effecting changes only within one ship-
type (e.g., SS or SSN) in successive example-solutions and by
providing all such required variations within one ship-type in

• -sequence before proceeding to the next type.

The measure was computed as follows:

1. If on two successive example-solutions more than
:one ship type was changed - score 0.

2. If on two successive example-solutions changes

occured only within one ship type - score 1.

3. If on three successive example-solutions changes
occured only within one ship type - score I for the
first change (according to condition 2 above) and
2 for the second change.

4. And so forth for 4 or more successive example-
solutions.

23
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Data Analysis

Analysis 1: ANOVA

Purpose. The purpose of this analysis was to determine

whether the main experiment variables (problem-complexity,
feedback-aids, and participant-population) affected overall perfo'-
mance.

Method. An ANOVA was used to evaluate main and
interactive effects.

Results. Table 4 shows that participant population and
S-. problem-complexity had a significant effect on performance, as

: -. measured by the area-score, but that feedback-aids did not.

Analysis 2: Means

Purpose. To investigate the significance of the differences
in experimental-cell mean scores.

Method. An a posteriori multiple comparison of means
test (Student-Newman-Keuls (SNK)) was used to determine the
statistical significance of treatment-means.

Results. Table 5 contains the mean scores for each
of the experiment cells. As shown (and as expected from the
previous experiments) programmers were better than bookkeepers/
accountants, but not always substantially better. For instance,
in cell AF 1 performance of both programmers and bookkeepers/
accountans was quite close, though in the other cells the performance
was substantially different. For programmers, cell-performance
ranges from a high of .778 to a low of .525; bookkeepers/

. I accountants' cell-performance ranges from . 589 to . 175.

The results of the SNK test for programmers are shown
in Table 8, where a statistically significant (P !s .05) difference
was found between performance in cell A 1 F 2 , where superior per-
formance was obtained, and cell A3 F 3 , where the lowest per-
formance was obtained.

24
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Table 4

Analysis or Variance Table

ANOVA Table Follows:

Source of Variation SS DF MS F _!

Between Subjects 26.6563263 59

C 3.7321777 1 3.7321777 9.303 .005
*-.Rows 0.1865654 2 0.0932827 0.233 NS

C X Rows 1.0740433 2 0.5370216 1.339 NS
Sub within Group 21.6635399 54 0.4011767

Within Subjects 3.0878906 120

A 0.4542351 2 0.2271175 10.341 .001
B 0.0535393 2 0.0267696 1.218 NS
AC 0.0353241 2 0.0176620 .804 NS
BC 0.0102844 2 0.0051422 .234 NS
AB 0.0600395 2 0.0300198 1.SA6 NS
ABC 0.1024704 2 0.0512352 2.33 NS[Error (Within) 2.3719132 108 .0219621

A - Problem -Complexity
B3 - Feedback-Aide
C - Part ic ipant-Categor ies (Programmers, Bookkeepers/Acct)

L 25



tt
(n c'j

L

C.)

4 -

0)C\j Y
a L.L

0)
L
(d

0) (D
0)) 3 '

0

L 0 0 i
o E 00
U) m to

Li

a~~ d)I..I

LiL

Nf L.l

LL (fl in

.0)LL

26i N00

Z! U )CUO l



-- . . .. . . . . . . . . . . . . . . .... .7 7-%:

Table 6

Student - Newman - Keuls Test

Results for Programmers

Problem Level A

Feedback Aid 3  A2 F2  A2: 3 A

Means .525 .593 .595 .627 .656 .678 .686 .745 .778

A3F 3  .525 -

AIF .593 .068

A2F2  .595 .070 .002 -

A F .627 .102 .034 .032 -
"2 3

A3F 2  .656 .131 .063 .061 .029

A F .678 .153 .085 .083 .051 .022 -

A F .686 .161 .093 .091 .059 .030 .008 -

A F .745 .220 .152 .150 .118 .089 .067 .059 -

A F .778 .253 .185 .183 .151 .122 .100 .092 .033 -

1 2

LSR 9 8 7 6 5 4 13 2

*Means of all programmers' performance in each cell, i.e., A F , A F 2 , etc.

**Indicates row is significantly different from column value p . Ob.

A 1, A 2 , A 3 Problem-Complexity Levels
F 1 , F 2 # F3  Level of Feedback-Aid

Each matrix entry = row value - column value

(e.g., entry in second row, first column ts .068= .593 - .525)
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A more complex picture is shown in Table 7, which gives
the results of the SNK test for bookkeepers/accountants. Per-
formance in cell A F was shown to be significantly superior to
performance in all other cells except A F . And performance in

A F , in turn, was shown to be significanily superior to per-1 3
formance in A F and A F

Analysis 3: Percentage of Participants wi th Perfect Score

Purpose. To identify the percent of subjects with per-

fect scores and, thus, to reveal the impact of experimental
factors on superior performers.

." Method. Calculate the percent of participants achieving

a 1 .0 score.

Results. The results for programmers, given in Table 8,
show that cell A1 F had the highest percentage, 60% of the
participants who acieved perfect scores. In contrast, only 20%

of the participants achieved perfect scores in A F This re-
flects the same trend as for the average scores reported in

the previous analysis and gives some evidence that feedback-
level F may have been more useful to superior performers than
feedback-level F And, apparently, experimental factors

3'
affected superior performers as well as less-th-an-superior per-
formers.

But a somewhat different story was presented by the

results for bookkeepers/accountants, also shown in Table 8,
where approximately 40% of the participant achieved perfect
scores for cell A F , a percentage exceeding that of cell A F

Also, the percent'o? performers achieving a perfect score in
cell A F was equal to that in A F , which was again different
from thelresults using average score described in the previous

analysis. Apparently, then, for bookkeepers/accountants,
the experiment factors affected superior performers in a different

way then they affected the less-than-superior performers.

Figures 7 and 8 give the mean scores for each parti-

cipant-category versus problem-complexity and feedback-levels,
respectively. As shown in the Figure 7, increasing problem-

complexity resulted in a reduction in average performance for

both participant-categories. Feedback-levels in the order F
F 2 , F 3 resulted in a decreasing level of average performance

28



Table 7

Student- Newman - Keuls Test

Results for Bookkeepers/Accountants

Problem Level
Feedback Aid A F AF AF AF AFAF AF AFFeebac Aid 3a 1 12 33 2 22

Means* .175 .217 .305 .337 .391 .392 .422 .464 .589

A3F .175 -

AF .217 .042 "
23

AIF 2 .305 .130 .088 -

A F .337 .162 .120 .032 -
.- °3

- A F .391 .216 .174 .086 .054 .

A F .392 .217 .175 .087 .055 .001 -32 

A2 F .422 .247 .205 .117 .085 .031 .030

* * ** .

A F .464 .289 .247 .159 .127 .073 .072 .042 .

** ** ** *, ** ** **

A .589 .414 .372 .284 .252 .19 .19- .167 .125 -

LSR 9 8 7 6 5 4 3 2

*Means of all bookkeepers/accountants' performance in each cell, i.e., A 1 F 1 ,

A 1 F 2 , etc.

-. **Indicates row is significantly different from column value p S .05.

A 1 , A 2 , A 3 Problem-Complexity Levels

F 1 , F2 , F3  Levels of Feedback-Aid-.

Each matrix entry = row value - column value

- (e.g., entry in second row. first column is .042= .217 - .175)
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Figure 8. Mean Scores f~or each Participant-Category vs.
Feedback Levels
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for bookkeepers/&ccountants. For programmers, however,
there was an increase (but not a statistically significant increase)
in average performance for level F over that for Fand F.

Analysis 4: Effect of Feedback-Aids on Sub Populations and
Relative Area-Score

Purpose To determine the effect of the experimental
variables on portions of the participant-populations as measured
by the relative area-score. Rational for this analysis was that:

Combinational strategy was known to be related to
performance (from Experiments 1 and 2). * Feedback
Aids #2 and #3 were designed based on that result
and were used in Experiments 3 and 4 to assist
participants in developing systematic (i.e.*, combinational)
strategies. But, the analysis above of data from
Experiments 3 and 4, using the absolute area-score,
did not reveal any substantial benefit provided by the aids.

To further investigate the existence of aid impact, a set ofV
analyses, labeled A through M was conducted. The purpose of
these analyses was to determine whether the aids-effect was a
function of:

1. Various combinations of feedback-aids,
-. 2. Absolute vs. relative area-score,

3. All performers vs. performers who achieved less
than a perfect score on the pretest problem, and

4. Various combinations of participant sub-populations.

Method. Correlations, and univariate and linear multi-
variate regressions were run to analyze the relationship between

the feedback aids (and other independent variables) and area-
score, both absolute and relative, for conditions 1 through 4
above. Rationale and details of the method for each condition
are given in the following paragraphs.

7.0 Combinations of Feedback-Aids. Descriptions of the
content of each of the three feedback-aids have been given
previously. In order to determine performance ,,as measured
by the a'-ea-ecore) for pairs of aids, correlations and regressions

were run with various numerical codes assigned to each aid.

When performance for all of the three aids was analyzed, the
numerical codes were:

*Ibid.
33



I!Aid Code

#11
[3* 2 2

#3 3

The code was the numerical value assigned to the aid in the
regression analyses.

When performance with Aids #1 and #2 alone was
compared, tne codes were:

Aid Code

#2 2
#3 Performance for Aid #3 removed from

data file.

In the last case, when performance with Aids #1 and #2 was
compared to that with Aid #3 (this condition is noted, in the
subsequent Tables, as "I and 2, 3"), the following numerical
codes were used:

Aid Code

#2 1
*3 2

In this case, Aids #1 and #2 were rendered equivalent by the code.

Area-Score vs. Relative Area-Score. When perfor-
mance was measured with an absolute measure, the area-
score was used as the dependent variable. When the effect of the
experiment-factors on a participant's area-score relative to that
participant's score on the pretest was of interest, the relative
area-score was used as the dependent variable. Since the pre-
test problem was a (relatively) easy problem, performed with :
feedback Aid #1, the relative area-score was taken to be a
measure of the relative effect on performance of the other aids
and the more difficult problems. In contrast, the absolute
area-score Included that relative effort plus the varying capabilities
of each participant.
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Participant Ability. Another condition varied in the
analyses was the inclusion or exclusion of data for performers

K who achieved a perfect score of 1 .0 on the pretest. The rational
was that the feedback-aids may not have been required and
therefore may not have been beneficial to individuals who used
a systematic strategy independent of the aids, though the aids

~T. may still have helped those who would not have done well with-
out them. A score of less than 1 .0 on the pretest was taken
as an indication of the possible need for an aid in the experi-

V rnent problems.

Participant Sub-Population. Finally, analyses were
perfore frtrepripa-population conditions: both pro-
grammers; and bookkeepers/account~ants, programmers alone, and
bookkeepers/accountants alone.

Results.* Table 9 gives the results of correlation

analyses A through M, indicating each analysis condition and the
correlation of the feedback-aid with area-score or relative area-
sco~re.

In analyses A through H, ar-.a-score was correlated with
various combinations of feedback-aid and participant sub-populations

* * factors. While there was some variation among the correlation

coefficients, the absolute values of the coefficients were small-I
almost zero. This reflected a lack of strong association between
feedback-aids and performance as measured by area-score.

In analyses I through M, however, relative area-score
was correlated with the various combinations of feedback-aid
and participant sub-populations factors. A substantial increase
in corralation-values was observed. It was noted that the cor-
relation of the relative-score for non-programmers (i.e., boo,,-
keepers/accountants) was higher than that for programmers. This
may have been because non-programmers could use Aids #2 and
#3 to greater benefit.

Further, a comparison of the results of analyses K and L,
i.e., of performance with Aid #2 vs. Aid #3, showed that Aid #3
provided the higher correlation. This suggests that Aid *3 affected
performance to a greater degree than did Aid #2.
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Table 9

Correlation of Feedback-Aid vs.
Area-Score Under Various Conditions.3

Feed- Superior Partici-
back Area Performance pant Correla.

Analysis Aid Score on Pre-test Popula. Coeff.

A 1,2,3 Absolute Included Both -. 039

B 1 ,2 Absolute Included Both -. 011

C 1,3 Absolute Included Both -. 049

D 2,3 Absolute Included Both -. 037

E 1&2,3 Absolute Included Both -. 040

F 1,2,3 Absolute Included Prog. -.058 t

G 1,2,3 Absolute Included Non- -. 022
Prog.

H 1,2,3 Absolute Excluded Both -. 031

I 1,2,3 Relative Included Prog. .373
to Pr -
Test

J 1,2,3 " Included Non- .442
Prog.

* K 1,2 " Included Both .407

L 1,3 Included Both .452 U-

M 1,3 Excluded Both .467
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Finally, in Analysis M, which included only the sub-
population of all participants who did not achieve a perfect
1 .0 area-score on the pretest problem, increase in the correlation
coefficient was obtained over the same analysis (L) conducted
with the total participant population.

Table 10 gives the results of univariate regression
analyses in which feedback-aid combinations were coded as

-~ described previously for the independent variables and relative
area-score was the dependent variable. In terms of percent
variance explained in analyses I and J, a greater percent of
non-programmers' variance was explained than programmers'
Further, Feedback-Aid #3 (Analysis L) explained a greater
pe. -cent of variance than did Aid #2 (Analysis K). And finally,
21 .8% of the variance was explained by data involving Feedback-
Aids #1 and #3 and the sub-population that did not achieve a
perfect 1 .0 on the pretest.

The effect of feedback-aids together with other factors

on the relative area7-score in a mnultivariate regression is given
in Table 11. Results from Analysis H, which uses area-score,
are presented as a reference to reemphasize the insignificant
effect of feedback-aids and the significant effect of combinational-
strategy. In Analyses 1, J, and K, where relative area-score was
used, the significant effect of comb inati onal1-s trategy and the in-
creased effect of feedback-aids were demonstrated.

Analysis 5: Effect of Session -Sequence

Purpose. To determine the effect of sess ion- sequence
on performance.

Method. A univariate analysis was conducted with
session -sequence numbers as the independent variable and area-
score as the dependent variable.

Results. The results of a univariate regression analysis,
shown in Table 12, indicate that session sequence was a statistically
significant factor (P < .1), but that it explained only 1% of the
score variance. Apparently, session -sequence, while significant,
did not affect performance in a substantial way.
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Table 10

Correlation/Regress ion Analysis
Effect of Feedback-Aids on Relative Area-Score

Independent Correla. Regre. Variance t- P
Variable Coeff. Coeff. Explained Value

Analysis I (Programmerb)

Feedback-Aid .373 .0945 13.9 3.05 .002
1,2,3

Analysis J (Non Programmers)

Feedback-Aid .442 .1348 19.6 3.62 .001

1,2,3

Analysis K (All Partictpants)

Feedback-Aid .402 .1140 16.5 4.75 .001

1,2

Analysis L (All Participants)

Feedback-Aid .452 .1418 20.5 5.41 .001

1,3

Analysis M
(All Participants except those scorinq 1.0 on Pretest)

Feedback-Aid .467 .1507 21.8 4.47 .001

1,3 I-
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Table I I

Correlation Regression Analysis
Effect of Feedback-Aids on Area-Score

and Relative Area-Score

Independent Correla. Regre. Variance t- P
Variable Coeff. Coeff Explained Value S

Analysis H (Area-score and all participants except
those scoring 1 .0 on pretest)

Feedback-Aids
1,2,3 -. 031 -. 0326 525 NS

Combinational. 42.6 .0.strategy .651 .7271 730 .001 .

Analysis I (Programmers relative area-score)

Feedback-Aids
1,2,3 .373 .0960 3.10 .001

Combinational 15.6
Strategy -.113 -.0514 -1.06 NS

Analysis J (Bookkeepers/accountants
relative area-score)

Feedback-Aids
1,2,3 .442 .1298 3.61 .001

Combinational 26.7 .7 .0
Strategy .294 .1284 2.27 .05""

Analysis K (All participants, relative
area-score)

Feedback-Aids
1,2 .407 .11 M 4. .", .001, % -13 -o~o, 17.1
p2  -.139 -.0301 -0.85 NS

Analysis L (All participants, relative
area-score) 9-

Feedback-Aids
1,3 .452 .1288 4.91 .001Problem Corm- 

'plexity .189 .0000033 26.1 1.72 .05

Time .295 .000026 1.91 .05

Analysis M (All participants except those scoring
1 .0 an pretest, relative area-score)

Feedback-Aids
1,3 .467 .1407 4.18 .001

Problem Corn-
plexity .204 .0000043 28.2 1.75 .05 .

Time .282 .000023 1.39 .10
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Analysis 6: Demographic Factors and Performance

Purpose. To investigate the effect of demographic
factors on participants' performance

,. .-. Method. Univariate and multivariate regression analyses

were used to evaluate the effectsof age, years-of-higher-education,
and years-of-experience on the overall performance.

Results. Figures 9 and 10 plot the mean score vs. the
years- of- higher- education for programmers and bookkeepers/

. accountants, respectively. The scatter diagrams show a broad

distribution of scores seemingly uncorrelated with years-of-higher-
education. Similar scatter diagrams are shown in Figures 11

and 12, which plot the mean scores vs. years-of-experience
for programmers/and bookkeepers/accountants, respectively.
Again, the large spread of values suggests a low correlation
between years-of-experience and mean score for both pro-
grammers and bookkeepers/accountants.

p This result was verified for all oarticipants by the

univariate and multivariate regressions shown in Table 13.
r 6Here, age was the only factor providing a ,irnificant univariate

., K' ]  regression. Age was negatively correlated with score. This

was consistant with results found in Experitn',ts 1 and 2.*

In a multi variate regression, three factors were

found to have regression coefficients significantly different from
zero. These were age, higher-education, and years-of-ex-

: perience. Higher-education and years-of-experience, although
positively correlated with overall area-score, had low correlation
values, viz., .077 and .085, respectively. Further, these three

variables, although they are usually the dominant factors con-
sidered in hiring, promoting, and establishing salary, together

S.,* explained only about 15% of the area-score variance.

Table 14 gives the results of univariate and multivariate

, regression analyses in which demographic variables were the

independent variables and combinational strategy score was the

dependent variable. Results similar to those for area-score

were found here: age, which was negatively correlated with the

strategy score, was the only variable found to be statistically

S; * Ibid.
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Table 13

Correlation/Regression Analyses:
Demographic Factors vs. Area-Score

%
Independent Correla. Regre. Variance t-

Variable Coeff. Coeff. Explained Value P S_

Univariate Regressions

Age -. 225 -. 0089 5.1 -3.36 .005

Multi-variate Regression

Age -. 225 -. 0196 -5.89 .0005

- Higher .077 .0140 15.2 1.53 .10

Education

Years .085 .0241 4.62 .0005

Experience
'. 

Analysis of Variance Table*

Sum Mean F
-Source Squares df Squares Ratio P S

Regression 5.28 3 1.762 12.48 .005

Residue 29.49 209 .411

*Analysis of Variance Table for the Multi-variate Regression

".14
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Demgrahico 1 ~~tiTable 14

C orrelaton/Regress ion Analyses:
Demographic Factors vs. Combinational-Strategy Score

-" Independent Correla. Regre. Variance t-

Variable Coeff. Coeff. Explained Value P -

Univariate Regressions

Age -. 160 -.0055 2.6 -2.36 .025

Multi- variate Regression

Age -. 160 -. 012 -4.11 .0005

Higher .098 .014 8.6 1.72 .05

Education

Years .061 .014 3.13 .005
Experience

S Analysis of Variance Table*

Sum Mean F

Source Squares df Squares Ratio P__

Regression 2.253 3 .750 6.52 .005

Residue 24.05 209 .115

*Analysis of Variance Table for the Multi-variate Regression

-5..
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L:7Z.

significant in univariate regressions, although all three factors
had significant, non-zero coefficients in a multivariate re-

gression. Together, they explained about 9% of the strategy-
score variance with, again, higher-education and years-of-ex-
perience positively correlated with strategy score.

Analysis 7: Experience-Related Demographic Factors and
Area-Score

* Purpose. To investigate the effect of experience-related
demographic factors on area-score.

Method. A correlation analysis was used to reveal the
relationship between demographic variables and area-score.
Experience-related demographic variables were:

1. The number of programming languages known and
used to code at least 1 program.

2. The number of programming languages used to

code 11 or more programs.

3. The total number of programs written.

4. The number of programming areas involved in,

among the following:

a. Data entry

b. Production Control

c. Operations
: d. Application Programming

e. System Programming
f. System Analysis
g. Data Base Administration
h. Data Communication
i. Other

5. The number of operating systems used.

In addition to the correlation analysis, univariate and multi-
variate analyses were conducted using the experience-related

factors as independent variables and area-score as the dependent
variable.
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Results. Table 15 gives the results of the correlation
analysis, in which "number of programming languages" and
"number of operating systems" were shown to have correlation
coefficients of .435 and .429, respectively. This result suggests
that breadth of experience rather than mere length of work
experience may be more important to performance prediction.

Since the "number of programming languages used in
11 or more programs" had a considerably lower correlation
coefficient than "number of programming languages used"
(.435 vs. .207), the amount of experience with a language was

apparently less important than knowing multiple languages.

The univariate and multivariate regressions shown
in Table 16 rwevealed that only three factors ("number of languages",
"number of programs written" and "number of operating systems")
explained a significant amount of score variance. The result noted

above, concerning the lack of importance of the amount of ex-
perience, was further emphasized by the negative correlation be-
tween "number of programs written" and score. The factor
"number of programs written" may be closely associated with other
factors such as age (shown to be also negatively correlated with
area score) or narrowness of experience (individuals who write
many programs in one language and use one operating system
may not have the broad viewpoint of individuals using multiple languages
and systems).

A further result was that the percent variance explained by

"number of languages" and "number of operating" systems (18.9%,
and 18.4%, respectively) in univariate analyses was almost additive
for the variance explained in the multivariate analysis. This

suggests that these two factors reflect different capabilities, and
that each experience individually contributes to an individual's
ability to perform well.

Analysis 8: Strategy-Factors

Purpose. To determine the relationships among experimental
factors, including measures of participant-strategy, and to identify
the relationship between strategy-factors and area-score.
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Table 15 '

34.0,Correlation Between Experience Related
Demographic Factors and Area-Score

Correlation
* Coefficient

1. Number of Programming .435
Languages Used for 1 or
More Programs

2. Number of Programming
Languages Used for 11 .207
or More Programs

3. Total Number of Programs -. 281

4. Number of Areas of .210
Experience

5. Number of Operating .429
SystemsI%
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Table 16

Correlation/Regress ion Analyses
Experience Related Demographic Factors

vs. Area-Score

Independent Correla. Regre. \Mariance t- P" Variable Coeff. CoefF. Explained Value <

Univariate Regressions
No. of
Languages .435 .1175 18.9 2.55 .01

Total No.

of Programs
Written -. 281 -. 00055 7.9 -1.55 .10
No. of
Operating
Systems .429 .0838 18.4 2.51 .01

Multivariate Regress ion
No. of
Languages .435 .1045 2.36 .025

"* Total No.
of Programs
Written -.281 -.00066 39.1 -2.15 .025

No. of
Operating
Systems .429 .0588 1.85 .05

Analysis of Va-tace Tle,

Sum Mean F p
Source Squares df Squares Ratio is

Regress ion 1.402 3 .467 5.56 .005
Res idue 2.184 26 .083

*For Multivariate Regression
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pMethod. A correlation analysis was used to determine
the relationships among the experimental factors and the measures
of participant strategy. Univariate and multivariate regressions
were developed to establish the relationships between the strategy-

factors and area-score.

Results. Correlations among the experimental independent
- variables are shown in Table 17. The probabilities P and P2

were anti-correlated with a correlation coefficient - 2
• .Since this had been shown previously to be a result of

* the way these factors were computed, P and P were not used
1 2in a regression as independent variables. Also, P was correlated

(.412) with combinational-strategy, suggesting that many individuals
who used a systematic strategy also generated multiple example-
solutions before testing the solutions via feedback-aids.

*11 Table 18 provides the results of the univariate regression
analyses, which indicated that P and P were significantly
correlated with area-score, explaining gA and 6.3% of the variance,
respectively. Combinational-strategy, which was also significant,
explained 58% of the variance, and was thus the best single pre-
dictor of area-score. For reference, pretest score, which
could be taken as a measure of a participant's ability to develop
example-solutions, was found to be significant and predicted 44%
of the score variance in a univariate regression.

In a multivariate regression, also shown in Table 18,
a combination of P and combinational-strategy resulted in a
non-significant coefficient for P 1 , and virtually no increase in
variance explained over that explained by the combinational-
strategy in a univariate regression. Thus, substantially all the

- variance explained by the P and P factors was also explained
by the combinational-strategy factor.

A similar analysis using a multivariate regression,
shown in the same table, indicated that combinational-strategy
and pretest score provided a significant regression and explained
68% of the variance. Thus, although most of the variance ex-
plained by the pretest score was also explained by the conbin-
ational strategy factor, approximately 10% additional variance was

.1 explained using the two factors together.
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.A Table 17

Correlation Among Independent (Strategy) Variables

2 3 4 5 6 7

1. Session .018 .000 .204 -. 206 .156 -.013

2. Problem-
Complexity .016 .1'15-. 12') -. 124 .012

3. Feedback-Aid .022 -. 150 -. 029 -. 013

4. p -. 933 .412 .271

11
5. P 2  -.355 -.221

6. Combinational .534

Strategy-Measure

7. Pretest Score

5
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Table 18

Correlation/Regress ion Analyses:
Strategy Factors vs. Area-Score

Independent Correla. Regre. Variance t
Variable Coeff. Coeff. Explained Value P ~

Univariate Regressions

P1  .300 .377 9.0 4.14 .0005

P-.251 -.308 6.3 -3.42 .005

Combina-
tional .766 .901 58.6 15.71 .0005
Strategy

Pre-test .669 .781 44.8 11.87 .0005
Score

Multi-variate Regression

P1  .300 -.024~ -.359 NS

Combina- 58.7
tional .766 .915 14.425 .0005

Strategy flti-variate Regression*

Combina-

tional .766 .676 11.26 .0005

Strategy 68.1

Pre-test .669 .425 7.17 .0005

Analysis of Variance Table*

Sum Mean F
Source Squares df Squares Ratio Ps<

Regression 20.09 2 10.04 184.86 .005

Residue 9.40 173 .04

*Analysis of Variance Table for the second Multi-Variate Regression
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Discussion of Experiments 3 and 4

Feedback-Aids

The effect of the feedback-aids as measured by the

area-score was not statistically significant. However, the
-! effect of the aids measured by the relative area-score was

found to be significant and important.

Apparently the aids did help at least a portion of the
participant population - the less-than-superior performers.
Those who would perform well without the aids were not helped
by the aids. Also, it is apparent that variations in perform:%nce
due to the participants' innate abilities may have been greater
than variations in performance due to the feedback-aids. This
factor, plus the observation that superior performers may not
need or use the aids, may account for the insignificant effect
of the aids on area-score and the significant effect on relative
area-score.

Feedback-Aid #3 appears to have affected performance
to a greater degree than did Aid #2. Aid #3 included the SSL
and provided recommended next-logical example-solutions based
on patterns in the example-solutions input previously. On the
other hand, Aid #2 included the SSL and an ordered list of
example-solutions previously entered. With Aid #2 the participant
had to examine the pattern of previous inputs and develop any

Pmissing example-solutions. With Aid #3 the participant was
presented with recommendations. Thus, if the example-solutions
previously entered were not in error, it was reasonable to
expect that Aid #3 might support performance that was superior
to that supported by Aid #2.

Yet Aid #3 could give false recommendations without in-
dicating the basis for the false recommendations. If, for instance,

Aid #3 was used early in the problem, when only a few example-
solutions had been input by the participant, there were numerous
possible completion-patterns many of which were not correct.
As a result, each of the recommended example-solutions should

Sm"have been carefully tested before it was accepted. Also, if the
" participant had input an example-solution that contained an error,

Aid #3 recommended for consideration solutions that actually
completed the error-induced patterns. This information could
be helpful or harmfUl depending on how it was used. If the
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recommended solutions were used without careful evaluation, this
.. type of feedback would have been harmful. If however, the display

of patterns built on an error increased the likelihood of the
error's detection - by displaying its impact - then aids providing
recommended-solutions would have been helpful in detecting input-
errors.

* -Demographic Factors

The lack of a strong relationship between years-of-
higher-education or years of experience and performance may be

a surprise to educators and directors of personnel departments.
" This result was also reported by Connelly et. al 1981 and by

Sheppard, Kruesi, and Curtis 1980.

Additional results suggested that the "number of pro-

gramming languages (used on 1 or more programs)" and "number
of operating systems used" were factors that should be used for
evaluating computer users/programmers capability - in place of
years-higher-education and years-of-experience.

But there was additional information in the results. The
fact that "number of programs used for 11 or more programs"
did not result in a significant univariate regression and had a
lower correlation value with performance than did "number of
languages used for at least 1 program" suggests that depth of
language experience was not as important as breadth.

-;. Further, the question arises: were the language- and

operating-system factors stated above merely indicators of
superior performers (i.e., superior performers may tend to
learn many languages and use many operating systems) or did,
instead, the knowledge of multiple languages and experience with
multiplo operating systems have value in themselves. If the
former hypothesis is true, then one would expect that the number
of languages known and the number of operating systems used
would reflect the same factor: namely, individual capability.
Further, very capable individuals might be expected to write many
programs in each language and work in a number of programming
areas. But, in fact, these other variables did not result in
significant univartate regressions or were negatively correlated
with performance (e.g., "Number of programs written" was negatively
correlated with performance and "Number of Programming
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areas" was not significant). Thus, there was no strong support
for the first hypothesis.

Additional and positive evidence supporting the second
hypothesis was that the variances explained by the "number of
languages" and "number of systems" factors in univariate
regressions (each of which explained approximately 18% of
the performance variance) combined almost additively in the
multivariate regression using both factors and "number of
programs written" for the independent variables. This result
implies that the two factors- "number of languages" and "number
of operating systems" - were substaintially different factors and
supports the hypothesis that knowledge or experience factors are of
value in themselves and were not merely indicators of superior
performers.

With respect to the implications of the second hypothesis,
a common factor, "knowledge ofor the ability to generate, al-
ternative approaches to a problem" (referred to subsequently as
"1alternative approaches"), would be expected to increase as
additional programming languages are learned and as additional

ON operating systems are used. Further, the repeated use of a
language already known would not be expected to increase know--
ledge of alternative approaches greatly because it is repetitious
and not conducive to formulating new viewpoints. Under this argu-
ment, the "number of languages used for 11 or more programs" would
not be expected to be an important variable. A similar argument
applies to the "number of programs written" and to "the number
of application- areas".

The failure of the factor "number of years-of- experience"
to explain a large amount of performance variance may simply
reflect the repetitious nature of experience, unconducive to the
creation of alternative viewpoints. The failure of "lyears- of-
advanced-education", however, to explain a considerable amount
of performance variance is a curious result, because one might
expect that advanced education would help to create alternative
viewpoints or at least to be helpful in some way in problem
solving. It may be that education in software science and
accounting/bookkeeping tends to involve rote learning rather
than more creative problem-solving methods which develop
the ability to create alternative viewpoints.
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The conjecture that the ability to develop alternative

approaches was an underlying performance-factor appears to
hold up against the tests of the independent variables described
above. Of course, experiments need to be designed to test the

i%',:. alternative-approach hypothesis; but, it is an attractive hypothesis,
since it presumably involves a "trainable" factor. Further, there

may exist other experience-related, independent variables that can

enhance the ability to develop alternative approaches, that are
different from "number of languages" and "number of operating
systems'" and that can further improve our ability to predict
performance. Ultimately, these may lead to improved problem-
solving performance in command and control, and programming
tasks.

Strategy Factors

Combinational-strategy was found to be the single best
predictor of performance. This result is the same as that found

• ",in Experiments1 and 2, where approximately the same percent of
variance was explained (63%in Experiments1 and 2 and 58% in
Experiments 3 and 4). The success of the combinational-strategy

* measure shows the power of moment-to-moment measures, i.e. ,

their ability to indicate the value of actions currently underway.
When validated with summary performance-measures, the moment-

.: to-moment measures become operational-measures in themselves.
rZ A moment-to-moment measure thus provides greatly improved

sersitivity over summary measures for the evaluation of each

user- input.
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EXPERIMENT 5

Purvpose

V The purpose of Experiment 5 wais to investigate the

ability of experienced programmers to detect and then to re-
vise initially incorrect example-solut ions to problems similar

K to those used in the previous experiments.

Method

Participants

Participants were experienced programmers obtained
by the same means as for Experiments #1 and #3.

Procedure

The procedure used in this experiment was the same

as that in Experiments #1 through #4.

Experiment #5 Design

The experiment design was the same as that for
Experiments #3 and #4, except that:

1. Only one participant population (programmers) was
used.

2. Factor A, which, in Experiments #1 through #4,
was the problem-complexity as measured by
Halstead's E Metric, now became the number of
ship-combinations (out of a total of 14 possible)

a that were correct at the beginning of each
problem.

Experiment Task

Each experiment task consisted of reading the spec ifi-
cations for a Naval task force, and then of examining and
correcting, as necessary, a set of example-solutions (i.e.,
ship combinations) for that task force. Each task-force
specification required 14 distinct example-solutions (i.e., 14
distinct sets of ship- combinations within a specified range of
transiting and stationing times). Thus, the participant's task
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was to review an existing set of example-solutions, delete in-
correct example-solutions, and enter any now example-solutions

necessary to completely specify all the required ship-combinations
within the required range of transiting and stationing times.

This task was similar to that used in Experiments #1

through #4, except that, in those earlier experiments, the

participant was. not presented with an initial set of example-
solutions and, thus, the participant himself had to enter all the

example-solutions. In experiment #5, participants were pre-

sented with a set of 14 example-solutions entered into the
computer, among which, however, were several incorrect
solutions. The three problem-complexity levels of Experiment
#5 corresponded therefore to 6, 9, and 14 initially incorrect

example-solutions.

A pretest problem was given to each participant prior

to the three experiment problems. The pretest problem was

the same as that given to participants in the previous experiments,
i.e., it did not present an initial set of example-solutions.

Performance Measurement

Several measures were used to evaluate performance in

Experiment #5. One, :-easure ( M 1 ) was the probability of re-
taining an example-soiution that was initially correct. Another
measure (M 2 ) was ths probability of cancelling an example-

solution that was initially incorrect. A third measure (M )
was the ratio of the number of correct example-solutions io
the total number of possible correct example -solutions (viz., 14).
The final measure (M 4 ) was the probability that an example-
solution was entered in error.

Measures M and M were unique to the problem of
revising example-souttions; tiey had no counterpart in the
proolems in which the participants entered all the solutions.

Measure M had one disadvantage which limited its use. M
was calculaed by dividing the number of example-solutions I

that were initially correct and were not modified by the partici-
pant by che number of example-solutions that were initially
correct. In the most complex problem, however, there were
no example-solutions that were initially correct. Since it is

not possible to divide by zero, that problem was not scored

with measure M 1 .
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Data Analysis

Analysis 1: Average Cell-Scores for M

Purpose. To determine the grand mean and average

cell probabilities for retaining example-solutions that were initially

correct.

Results. Table 19 gives the grand-mean and average-
cell probabilities for M 1 The grand mean probability over

the six cells was .934. There does not appear to have been a

consistent trend-effect for the A or B factors.

Analysis :_: Average Cell-Scores and ANOVA for M 22

Purpose. To determine whether there were significant

effects due to problem-complexity and the feedback-aids on M 2

(the probability of cancelling an initially incorrect example-
solution).

Method. Average cell probabilities and the grand-

mean value for M were calculated. An ANOVA for measure
a 2 was also calculated.

Results. Results are given Table 20. The grand-mean

value for M 2 was .650, which was substantially less than the grand-

mean for M 1 (.934). This implies that the probability of re-
cognizing that a correct entry was correct and of not changing

that entry was greater than the probability of recognizing and

cancelling an incorrect entry.

The analysis of variance table shows that the effect of

problem complexity was statistically significant, but that the
effect of the feedback-aids on M 2 was not significant. Further,

the trend of M was to increase with an increasing number of
2

initially incorrect example-solutions. Apparently, at least in

the experiment environment, an increase in initial errors led
to an increased probability of detection and correction for a

single error.
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Table 19

Average Cell-Scores M

Average Cell-Scores

A A A
1 2 3

B 1 .872 .960

B 2  .936 .960

B 3  .936 .940
3I

A A2 , and A are the problem--comDlexity levels

in increasing order.

B 1 , B , and B are theecdhack-Ai-; #1, #2, #3,2 3
respectively.

*MI is mathematically undefined for level A a

Grand Mean = .934
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Table 20

Analysis ofM

Ave rage Cell-Scores

A_ 1 A2 A3

B1 .500 .688 .764

B 2B .633 .624 .707

B 3 .500 .777 .658

A,, A2 , and A 3are the problem complexity levels in increasing
order.
B,,E2 , and B 3are the Feedback-Aids #1, #2, #3, respectively.

Grand Mean =.650

Analysis of Variance Table

Sum
Source Square df MS F

Between Subjects 7.*1735 29
Groups .2718 2 .1359 .532 NS
Subject W/I Groups 6.9017 27 .2556

Within Subjects 5.2657 60
A .5087 2 .2538 2. 901*
B .0013 2 .0006 .008 NS

(AB)' .0196 2 .0098 .112 NS
Error (Within) 4.7358 54 .0877
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Analysis 3: Average Cell-Scores and ANOVA for M 3

Purpose. To determine whether there were significant
effects due to problem-complexity and the Feedback-Aids on M
(the ratio of the number of correct example-solutions to the
total number of possible correct example-solutions).

Method. Average cell probabilities and the grand-
mean value for M were calculated. An ANOVA for M was
also calculated.

Results. Table 21 provides the results. The grand-
mean value was .793, which, as expected, was intermediate
to the grand-mean values for M 1 and M

The ANOVA revealed that the effect of problem-com-
plexity was statistically significant, but that the effect of the
Feedback-Aids was not significant.

Analysis 4: Average Cell-Scores and ANOVA for M4

Purpose. To determine whether there were significant
effects due to problem-complexity and the Feedback-Aids on M
(the probability that an erroneous example-solution was entered3.

Method. Average cell probabilities and the grand-mean
value for M 4 were calculated. An ANOVA for M 4 was also
calculated.

Results. Results are shown in Table 22. Neither
problem-complexity nor the Feedback-Aids was found to have
a significant effect on M 4

4

t.

64

.. a . t. ,": " ." 5 " " .d. ." '.? .: .* ;.i*.* - : - ..c.. . , .'. - .. . . - -,- - -



• , _ - , .. . . +,j + ,. +, . • , - + . . - - . .-. , . ., . % . . . -

Table 21

Analysis of M

Ave rage Cell-Scores

A A A1 2 3

B .857 .799 .764
1

82 .878 .735 .707

B. 871 .850 .678

3
A 1  A 2J and A 3 are the problem-comlexty levels in increasing

order.

BI, Be, and B f-hp Feedback-Aids #1, #d, *3, resoectively.
3

Grand Mean .793

Analysis oF Variance Table

Sum
Source Square df MS F

Between Subjects 3.0277 29
Groups .0815 2 .0407 .374 NS

Subjects W/I Groups 2.9461 27 .1091

Within Subjects 2.3245 60
A .3488 2 .1744 4.826*

B .0184 2 .0092 .256 NS
(AB)' .0058 2 .0024 .082 NS
Error (Within) 1 .9513 54 .03961

* P< .05
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Table 22

[... Analysts of M 4

Average Cell-Scores

A A A
1 2 3

81 ::! .123 .102 .040

a .032 .160 .196
2

B .062 .011 016

A,, A2 , and A 3 are the problem-complexity levels in increasing
order.

B1 B 2 , and B are the Feedback-Aids #1, #2, #3 respectively.
2 3

Grand Mean = .0989

Analysis of Variance Table

Sum
Source Square df MS F

Between Subjects 2. 864 29
Groups .237 2 .1189 1.223

Subject W/I Groups 2.626 27 .0972

Within Subjects 1.189 60
A .0562 2 0281 1.405 NS

B .0444 2 .0222 1.111 NS

(AB)' .0077 2 .0038 .193 NS

Error (Within) 1.0809 54 .0200
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Analysis 5: Relationships between Feedback-Aids, Session-
Number, Number of Ship-Combinations Initially Correct and
Measures MM M. andM

1 2' 3 M4

N Purpose To determine whether significant relationships
existed between various combinations of the Feedback-Aids, sess ion-
number, and number of ship-combinations initially correct and the

M"measures.

Method. Multivariate regression analyses were run

using combinations of the Feedback-Aids, session-number, and
problem-complexity (number of ship-combinations initially
correct) as the independent variables and the I'M" measures as

* the dependent variables. Three types of regression analysis
were performed using the coding system for the Feedback-Aids
described for Experiments 3 and 4. In one analysis, termed
"Analysis A", Feedback-Aid codes 1, 2, and 3 were assigned
to Aids #1, #2, and #3, respectively, and together were used
as one independent variable. In another type of analysis,

* -* ~ termed "Analysis B"1, Feedback-Aid codes 1 and 2 were
assigned to Aids #1 and #2, respectively, and the data for
Aid #3 was removed from the file. Finally, in the third
analysis, termed "Analysis C"I, codes 1 and 2 were assigned to
Aids #1 and #3, respectively, and were then used as the
independent variable with the data for Aid #2 removed from
the file.

Results. Regressions using M for the dependent
variable revealed that none of the three independent variables
(Feedback-Aids, session-number, and problem-complexity) had
significant regression coefficitents.* Since M was not defined
for problem level A 3 , however, only partial data were used
in the regression analyses.

Results of the multivariate regression analyses using
M as the dependent variable are given in Table 23. In each

2
analysis, although Feedback-Aids were found to be not significant,
problem-complexity was significant. Session-number was also
significant in two of the three analyses. Apparently, since sess ion-

* number was positively correlated with M , there was continued
learning and resultant improved performance on each successive
experiment.
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Table 23

Correlation/Regress ion Analyses:
M 2 vs. Experimental Factors

Independent Correla. Regre. Variance t-
Variable Coeff. Coeff. Explained Value P _

Analysis A

Feedback- -. 006 -. 0014 -. 030 NS-
Aids 1,2,3

Session .194 .0936 7.6 1.98 .05

No. of Ship-
Combinations -. 183 -. 0161 -1.88 .05
initially
correct

Analysis B

Feedback- .005 .0015 .016 NS
Aids 1,2

Session .142 .0704 5.2 1.17 NS

Combinations
initially -. 168 -.0146 -1.36 .10
correct

-Analysis C

Feedback- -.007 -.0018 .02 NS S

Aids 1,3

Session .265 .1274 13.9 2.33 .025

No. of Ship-
Combinations -.251 -. 0222 -2.12 .025

,* initially
correct
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Table 24 gives the results for the multivariate regression
analyses in which M was the dependent variable. Again, the
Feedback-Aids were3found to be not significant, while session-
number arid problem-complexity were both found to be significant
in each of the three analyses.

Since session-number was significant and positively
correlated with M (and also with M 2 ), performance apparently

32continued to improve with practice. This is in contrast to the
r. results of Experiments 1-4, where session was not found to bea significant factor.

7..! 7Problem-complexity was found to be positively correlated
with M . Thus, as the number of initially correct solutions3
increased, there was an increase in the ratio of the number of
correct solutions to total number of solutions. This result was
as expected.

Finally, regressions using M (the probability that
an example-solution entry was in error) revealed that there
were no statistically significant relationships between session-
number, feedback-aids, problem-complexity, and M . The
correctness of an example-solution entry was not aflected by
problem parameters or session-number.

Di';cut.,;ion: Experiment 5

-. It is apparent that differences among the Feedback-Aids,
* -- whiCh werec the same aids as those used in Experiments 3 and 4,

did not benefit participants engaged in revising example-solutions.
Even analyses comparing the performance of pairs of aids,

* "which were similar to the analyses of the data from Experiments
3 and 4, did not reveal any significant results for the Feedback-
Aids. Further, analyses using relative measures, which tended
to remove the effect of participant skill, did not result in
statistically significant results.

Apparently, then, differences among the aids of the type
used here, which may have helped in solving problems initially, did not
help in revising problem solutions. The reason may be as follows.
All the aids included the ship selection logic (SSL) feature, which
was automatically generated from the existing set of exampLe- solutions.
The example-solutions presented in an ordered way, and recommenda-
tions for next-logical example-solutions based on incomplete combinational
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Table 24

Correlation/Regress ion Analyses:

Svs. Experimental Factors

Independent Correla. Regre. Variance t-
Variable Coeff. Coeff. Explained Value P 15

Analysis A

Feedback- -. 012 -. 0047 -. 16 NS
Aids 1,2,3

Session .287 .0811 14.6 2.72 .005

No. of Ship-
Combinations .269 .0137 2.53 .01
initially
correct

Feedak Analysis B

Feedback -

Aids 1,2 -.069 -.0312 -. 51 NS

Session .264 .0738 13.0 1.98 .05

No. of Ship-
Combinations .255 .0126 1.90 .05

initially

correct

Analysis C

Feedback-

Aids 1,3 -.015 -.0090 -. 156 NS

Session .370 .1060 18.2 2.97 .005

No. of Ship-
Combinations .229 .0115 1.76 .05

initially

correct
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patterns detected in the existing example-solutions were the
features added by Aids #2 and #3, respectively. These new
features were designed to help the participants detect omissions
in combinational patterns. However, when revising existing
example-solutions some of which were not correct initially,
the omissions noted in the combinational patterns would have
been based, at first, on the existing incorrect example-solutions,
and thus the suggested patterns would have been incorrect. If
participants had first cancelled all incorrect example-solutions
and then had entered the correct solutions, the aids might have
been more helpful. The conclusion, then, is that the strategies
used successfully to revise existing solutions are at present
unknown, and that the aids designed to help in the development
of new solutions did not appear to be helpful in the revision of
solut[ ons.

Analysis of the grand-mean probabilities of success with
the four measures revealed a probability of .934 for retaining
an initially correct solution and a probability of .902, i.e. 1. -. 098
(see Analysis 4), for making an entry correctly. Since there
was a grand-mean probability of only .650 for detecting and
cancelling an erroneous example-solution, there was an
obvious performance decrement in the detection and correction
of erronecyis example-solutions. Useful aids might therefore
be directed toward the detection and correction of existing errors.

But there appears to have been a still more serious pro-
blem in the detection of errors. Problem-complexity measured
by the number of ship-combinations initially correct was negatively
correlated with M 2 . Thus, as the number of initially correct
example-solutions was increased, there was a decrease in the

" probability of correcting incorrect example-solutions. Stated
differently, as the number of incorrect solutions was decreased
there was a decrease in the probability of detecting and correcting
those incorrect example-solutions. The fewer the errors, the
lower the probability of detecting a given error. This result
suggests that there is a base-line probability (based on the
frequency of errors recently detected) for incorrect example-
solutions which affects the probability of judging that any solu-
tion is in fact incorrect. Thus, the perceived correctness of a
solution may be determined as function of:

,.4. 71
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1. the properties of that solution, and

p 2. the frequency of erroneous solutions previously
discovered.

This result, which is consistant with predictions of signal
detection theory (which states that the probability of an event is
a function of some base-line probability in addition to specific
measurements on the signal itself), would seem to predict a
decreasing probability of detecting and correcting errors with
decreasing error-rates. Also, it suggests that the probability
of detecting the last few errors may be so small that it is
not likely that those few remaining errors will be found. But
this result also suggests a possible solution: seeding errorski~ to increase the base-line--error probability and, thus, to increase
the probability of detecting unknown errors.
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EXPERIMENT 6

Purpose

The purpose of Experiment 6 was to investigate the capabilities

of programmers experienced in Fortran IV to write Fortran IV programs
to solve the same problems used in the Experiments 1 through 4. The

intent was to present to the programmer-participants a task that

was analogous to the task presented to participants in the earlier
experiments, where participants had to develop example-solutions to

solve the experiment problems. Having Experiment 6 participants

develop solutions to these same problems, but in Fortran IV code,

permitted a comparison of the accuracy and completeness of solutions

specified by example-solutions with those specified by the Fortran IV

code.

Method

j. :Participants

Participants were experienced F ortrdn IN programmers ob-

tained by the same means as the programmers for the earlier experi-

ments, i.e. via temporary personnel agencies at-nd newspaper advertis-

ments. Participant requirements were the same as for the other

experiments, except that only experienced Fortran IV programmers were

accepted.

Task

The objective of Experiment 6 was to determine the ability of

programmers to produce Fortran IV code for the problems used in

Experiments 1-4. While the complexity of those problems was fixed

.:, by the problems themselves, the machine processing of data in Ex-
periments 1 & 2 affected the number of example-solutions the participants

.-. had to develop and input. At one level, where little automatic processing
was provided, the participant had to develop a large number of example-
solutions. At another processing level, considerable automatic pro-

cessing was provided and, thus, fewer example-solutions were required
to specify the desired logic. In order to provide a task in Experiment
6 that would mimic this variation in processor complexity, the specifi-t cation requirements for the stationing- and trans iting-times had to be

LNvaried. Table 25 shows the participant-input required by this complexity-

factor in Experiment 6 along with the inputs required by the analogous
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Table 25

Similarity of Mission-Types (Experiment 6) and
Processor-Complexity Levels (Experiments 1 & 2)

Experiment #6 Experiment #1
Automatic

Mission Specification Processing Specification
Type Requirement Level Requirement

1 The MIN and MAX 1 The MIN and MAX

transiting-and transiting-and
stationing- times stationing-times
are constants, i.e. apply to all ships
are independent regardless of type
of ship type or or combination.
ship- comb inat ion
makeup.

2 The MIN and MAX 2 The MIN and MAX
transiting-and transiting-and
stationing-times stationing-times
are a function of apply to all ships
each distinct ship- in each particular
combination, combination.

3 The MIN and MAX 3 The MIN and MAX

* transiting-and transiting-and
stationing-times stationing-times

.4 are a function of apply to each ship
, of each ship type. type in each com-

bination.

v'.7

S%. .; 74
*, S''

a.-

.. .. . . . . . .. . . . . . . . .



factor in Experiment 1. Tables 26, 27, and 26 show the Experiment 6

specifications, referred to as Mission Types 1, 2, and 3, respectively,
for the stationing- and transiting-times as given to the participants.

As shown in Table 25, the task transiting- and stationing-time

requirements in Experiment 6 are analogous to the processor complexity
levels of Experiments 1 & 2. This should not be taken to imply that the
associated tasks were identical, however. In Experiments 1 & 2,

ll participants were asked to develop and to inpuL enough specific example-
solutions, i.e. discrete sets of ship-combinations, to specify, with the

aid of the processor, the ship-selection 1:)gic (Sb-A ). In contrast,
Experiment 6 participants were asked to levelop s- vntactic specifications
for the ship-selection logic using Fortran IV cod,

Table .,

Mission Type 1

All ships must have a transiting-time of 5 days or less,

AND

All ships must have a stationing-time of 10 days or more.

Design

The design of Experiment 6 was a 2 x 2 factor Latin Square

design with three levels per factor. This design has been described
in previous material on Experiments 3 and 4. Factor A was the
problem-complexity. Factor B (Mission-Type) comprised the MIN
and MAX transiting- and stationing-time requirements.

Procedure

Each participant was scheduled for either an 8:00 a.m. or

1:00 p.m. session. Upon arrival, the participant was asked to fill
out a biogr-4phical-data form and an experiment agreement. On

completion, the biographical data were reviewed by the experimenter
to insure compliance with the preestablished experiment entrance
criteria. The participant, if accepted, then viewed a video tape which

provided the experiment instructions. The participant w-,s given a copy

of the instructions to follow along and to mark-up as he/she chose.
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p Table 27

Mission-Type 2

The stationing time is a function of the makeup of the

ship-combinations, as follows:

If there is 1 or more nuclear ship (a OVAN, CGN,

or SSN) in a particular ship-combination, then the

stationing-time for all ships in that combination must

be 30 or more. If there are no nuclear ships

in a particular combination, then the stationing-time

K for all ships in that combination must be 10 days or

r greater.

The transiting time specification is 5 days or less

V for all ships.

Following the presentation of instructions, the participant
entered the experiment room to work on the four problems. 'The
first problem was a pre-test problem, followed by the three experi-
ment problems. One hour, maximum, was allowed for each problem.

The participant entered Fortran IV code via a keyboard
and observed the code on a terminal video-display. The computer
system was placed in a screen-edit mode by the experimenter prior
to each experiment. Thus, the participant could:

1. Enter code by pressing the alpha-numeric keys.

2. Correct an error by placing a curser under the
target-character and pressing the ERASE key.
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* .Table 28

-Mission-Type 3

Transiting- Stationing-
Time Time

Specification Specification

OVA 10 Days or Less 10 Days or More

CVAN 5 Days or Less 30 Days or More
A 7 Days or Less 30 Days or More

CA 7 Days or Less 10 Days or More

OG 7 Days or Less 10 Days or More

CGN Days or Less 30 Days or More
DDN 10 Days o Less 20 Days or- Mor~e

SS 6 Days or Less 20 Days or More

SSN 10 Days or Less 30 Days or More

AO 20 Days or Less 20 Days or More
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(Four cursor controls were available, each of
which would move the cursor one character

-" when pressed. The cursor controls were: up,

own, left, right).

3. Start a new line by pressing the RETURN key.

4. View (and, if necessary, correct) previously

entered code which had been scrolled off-screen

by moving the cursor up or down.

The participant could enter and visually check the source-

code, but could not compile it.

Data Processing

The code entered by each participant for each problem

was maintained as a file. There were 30 (participants) x 4 (problems

"--.' each) = 120 files. Each file was subsequently modified to be a
subroutine so it could be tested by a main test-program. The

modification consisted of entering on -i new fir-st line the subroutine

name "SSL" and the names of the variables pv,,,;ed from the main

test-program to the subroutine and, orn a new 1. 1i l ine, a "RETURN"

command. (Note: each participan! wt, )rfvidc(I with a printed
r. glossary of variable nirres).

A permanent set of files, as entered by the participants,

was stored on tape in order to maintain a record of the "raw" data

of the experim nt. A duplicate set of files was then made; each

file was modified to form a subroutine; each subroutine was com-

piled; and a compiler-4isting was produced, annotated with error

statements. Based on the compiler-reported errors, the clearly

unintentional errors were determined and corrected, providing a

compilable object-module. A record of all corrections was
J - maintained and used in an error-analysis, to be described below.

Some of the error-corrections did not affect the logic of

the subroutine. These corrections included: syntax (e.g. missing

commas), missing parenthesis in "IF" statements, statements
starting in Columns 1-6, and continuation marks not in Column 6.

"L ;Other corrections which did affect the subroutine logic were: misspelled

words, array Indexing-errors, and defective do)tted keywords (used

in logical statements, e.g. "AND."). The correction policy was
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to make changes only when the compiler identified an error for
which the participant's intent (and therefore the necessary correction)
was obvious. For instance, a defective dotted keyword might be
bound, such as "AND.", which was then corrected to ".AND.".
Misspelled words often were easily corrected with confidence as
to intent, e.g. "ISHIP" was sometimes spelled "ISHIPS". IF

-statements placed line-after-line, i.e. in parallel construction.,
permitted correction of some missing parentheses.

In other cases, corrections could not be made with
confidence as to the intended logic. For instance, in the case
of missing statements, missing variables, or parentheses -

errors in complex statements that did not have other similar
statements for a guide, the corrections were not obvious and
were entered in a standard way, as follows. Mtissing statement errors
resulting from a statement such as "GO TO N" when there was no
statement labelled N were resolved for compilation by entering an
"N Continue" statement after the calling statement. For a missing

variable, a dummy variable was entered. Parentheses-corrections
were supplied at the beginning or ending of "IF" statements. The
only changes made in each file were those required to get an object-
module free of compiler-detected errors.

The logic of each subroutine was tested by linking It to a
main test-program,which would systematically develop both correct
and incorrect test ship-combinations, transfer the test ship-
combinations to the subroutine, and record their acceptance or
rejection by the subroutine.

Performance Measurement

Three performance measures were used to evaluate each
subroutine written by the participant. One measure (P ) was the
probability that the subroutine would accept a ship-comSination given
that it was in fact a correct combination (with probability PC)
according to the problem requirements. The second measure (P

- . i was the probability that the subroutine would reject a ship-com-
bination given that it was in fact an incorrect combination (with
probability P 1C) according to the problem requirements. The
third measure (PT) was the probability that the subroutine would

- accept or reject a ship-combination.
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Hence:
PC (Pc) + PIC (PIc P T (6)

iT Test ship-combinations were generated by varying the
number of ships of each ship type and the transiting- and

stationing-times for each ship type, starting with each known correct

ship-combination for the problem who';e participant solutions were
to be tested. -hus, If , known corr'e( I .hip-combination re-

quiring three ships was:

1 non-nuclear carrier (CVA) 5 days transiting
10 days stationing

AND

2 non-nuclear submarines (SS) 7 days transiting
15 days stationing

then that combination was used as part of the te.'. Another com-

bination, a variation of the above, that was alo-( tised art was

also correct, because shorter transiting times were always

acceptable, was:

1 non-nuclear carrier (OVA) 4 days transiting
10 days stationing

AND

2 non-nuclear submarines (SS) 7 days transiting
15 days stationing

An example of an incorrect ship-combination -- incorrect because

the number of submarines is incorrect -- that would have been used

in the test is:

*. 1 non-nuclear carrier (CVA) 5 days transiting
10 days stationing

AND

I non-nuclear submarine (SS) 7 days transiting
15 days stationing
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Table 29 gives the number of correct and incorrect ship-
combinations used to test the experiment data for each experiment
problem. Each correct ship-combination was varied by adding
and subtracting one ship of each type one-at-a-time, and by adding
and subtracting one day from transiting- and stationing-times for
each ship type one-at-a-time. Using this procedure, approximately
30% of all test ship-combinations formed were correct and approxi-
mately 70% were incorrect. That is PC .30 and P = .70.

C C

If a subroutine logic were to reject all ship-combinations
submitted to it, independent of whether the combinations were correct
or not, the probability (P ) that the subroutine would correctly classify0 T
a ship-combination selected at random from the test pool was
approximately .70. Conversly, if the subroutine accepted
all ship-combinations, the probability of correctly classifying a
ship combination selected at random from the tuc;i pool was approximately
.30. When interpreting the experiment data, it was important to

realize that, while the value of P had a range of anywhere from
T

* 0.0 to 1 .0, values close to .70 could result from subroutine rejection
of all or many ship-combinations independent of whether or not they
were correct.

Data Analysis

Analysis 1: Main and Interactive Effects

Purpose. To determine the significance of the main and
interactive effects of the experiment variables on PC' P and P

C 1 anPT

Method. Analysis-of-variance and Student-Newman-Keuls
test were used to analyze the data.

Results. Tables 30, 31, and 32 are analyses of variance

for PC, PIC , and P', respectively. Table 30 shows that problem- I
complexity-did not ahect performance in a significant way, but that
mission-type did have a significant effect on the probabitity of
accepting a correct ship-combination (Pc). In contrast, as shown

in Table 31, neither problem-complexity nor mission-type significantly
affected PIC, the probability of rejecting an incorrect ship-combina-
tion. Also, the level of overall performance was different: incorrect
combinations were rejected in 82% of the test problems, but only
51% of the correct combinations were accepted. Finally, Table 32
shows that the results for PT were similar to the results for P

81 81
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Table 30

Analysis of Variance: PC

Average Cell Scores

A A A1 2 3

B .754 .763 .665

B .489 .741 .5242

B 3  .141 .229 .296

A, A are the problem-complexity levels in increasing order.

1 A 2  3

81, B2 B3 are Mission-Types 1, 2, 3, respectively.

Grand Mean = .510

Analysis of Variance -I able

Source Sum
Squares df MS F

Between Subjects 4.5154 29

Groups .0053 2 .0026 .016 NS

Subjects W/ Groups 4.5101 27 .1670

Within Subjects 13.6570 60

A .2243 2 .1121 .667 NS
B 4.0309 2 2.0150 11.98*,

(AB)' .3194 2 . 1 597 .95 NS
Error (Within) 9.0824 54 .1681

***Significant at P _ .001
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Table 31

Analysis of Variance: P

Average Cell Scores

A A A
12 3

L B 1  .748 .808 .705

B . 88 .831 .863

B 3  .908 .828 .825
3J

AV A A are the problem-complexitv levels in increasino order.
1'2' 3

B1, B 2 B3 are Mission-Types 1, 2, 3, respectively.

Grand Mean = .823

Analysis of Variance Table
Sum

Source Square df NIS F

Between Subjects 2.966 29

Groups .0139 2 .0069 .064 NS
Subject W/I Groups 2.9521 27 .1093

Within Subjects 3.2799 60

A .0375 2 .0878 .342 NS

B .2162 2 .1081 1.970NS

(AB)' .0623 2 .0311 .568 NS

Error (Within) 2.9637 54 .0548

8
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Table 32

Analysis of Variance: P 
.

Average Cell Scores

A A A
1 2 3

B .747 .793 .693

B .765 .802 .760
2

B .673 .635 .634
3

Al, A2, A are the problem-complexity levels in increasing order.
12 3

B 1 , 62, B3 are Mission-Types 1, 2, 3, respectively.

Grand Mean = .726

Analysis of Variance Table
Sum

Source Square dF MS F

Between Subjects 1.134 29
Groups .0112 2 .0056 .135 NS
Subject W/ Groups 1.123 27 .0416

Within Subjects .9402 60
A .0222 2 .0111 .911 NS
B .2250 2 .1125 9.237***
(AB)' .0352 2 .0176 1.447 N S
Error (Within) .6577 54 .0121

***Significant at P t .001
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namely, that mission-type was the only major factor that affected
performance. All three tables indicate that the effect of differences
among the participant groups was not significant and, further, that I
problem-complexity and mission-type interactions were also not
significant.

Tables 33 and 34 provide the results of Student-Newman-
Keuls tests of mean differences for PC and P , respectively. Data
for P are not shown because no significant differences were found.-IC
For , the SNK test reveals that B 1 - performance was significantly
different from that for B3 . For PT the order of performance was
B , B , B with B the highest; B - performance was shown to be
d, erent fr;om that for 3 .  2

Analysis 2: Participant Strategy

Purpose. To determine the frequency of use ofand the
relationships amongthe participant strategy-factors. To determine
their effect on performance, i.e. on the completeness and accuracy
of the Fortran IV subroutines written by each participant.

Method. In solving the experiment problems by writing
r'ortran IV subroutines, participants tended to use specific strategies.
Although the appropriateness of a particular strategy depended on
the problem-complexity and the mission-type, a participant's
strategy-choices could be classified independent of whether or not
they were appropriate. Analysis of a subroutine disclosed the
strategies embedded in it, which were then coded according to the
scheme presented below. Strategy factors can be broken down into
two broad categories (See Fig. 13): the use of positive-logic
or the use of negative-logic. When considering ca plan for accepting
or rejecting ship-combinations, a participant ni,jht use:

1. Positive logic, where statements accepting correct
combinations are written and all other combinations
are rejected, or

2. Negative logic, where statements rejecting incorrect
combinations are written and all other combinations
are accepted as being correct. r
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p Table 33

Student-Newman-Keuls Test for PC

B I B 2  B 3

Means .727 .584 .222

B .727 -

kB .584 .14 NS -2

B .22 .502** .362 NS -

*Significant at P .05.

Table 34

Student-Newman-Keuls Test for P

Meas 2  B1  B3

Mas .776 .744 .657

B .776 -2

* .744 .032NS -

B .657 .119** .087 NS -

3

**Significant at P .05.
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Type of Logic

Positive/Negati ve

WArite statements to \Vrite statements to
accept correct corn- reject incorrect com-

* binations & reject binations & accept
all others all others

Combination- Check for erroneous
spec if ic? ship types

Yes No

Write statements Decompose
for each correct requirements
combination independent of

ship-combi nat ions

Combination Combination- Check for in-
tested independent correct number
completely? of ships

Yes No

Com plete Decompose
logic for combination
each c blogic

t ion
Check for in-
correct range

Combination- Decomposed of transiting
specific Combination and stationing
Logic Logic times

Figure 13. Strategy Considerations
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Consider first the positive-logic path. Here, statements

written to accept correct ship-combinations can be tailored to

each acceptable combination or else the logic of the requirements

can be generalized. For example, consider the logic required

by problem #93, as shown in Figure 14. Three distinct combina-

tions of ship types are specified in which each ship type may have

specific transiting- and stationing-time requirements. The

combination-specific approach results in separate, specific logic

statements for each of those three correct ship-combinations.
A requirements-decomposition approach, on the other hand, could

result in the separate statement that two submarines "SS) are re-

quired in all combinations with the remaining ships specified in

additional, separate statements. The requirements-decomposition

approach m-ight also result in statements concerning the logic

of the aircraft carriers, e.g., that the sum of CVA's plus CVAN's

must equal 2, stated independently.

If a combination-specific stra tegy is employed rather

than a combination-independent strategy, a choice remains between

specifying each combination completely ship by ship, or decomposing

it into statements separately concerning the nujmber of ship types,

transiting times, and stationing times.

Now, consider the negative-logic path. Here, statements

were written to reject ship-combinations that contained the following

errors:

i. Extraneous ship types,

2. Incorrect number of correct ship types, and

3. Incorrect range of stationing and/or transiting

times for correct ships types.

It must be noted that a ship selection logic can use one

path starting from the top (see Fig. 13) to one of the various end

points or it can use a mixed strategy. An example of a mixed

strategy would be the specification of acceptable ship types for

each ship-combination (a combination-specific logic) and the

blanket rejection of erroneous ships (a combination-independent

logic). %

The specific strategies- and techniques/style-factors

and their assigned codes for the Fortran subroutines were:

o89
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1. The ships needed for the task force are:

o 2 Attack Aircraft Carriers (OVA or OVAN),P

and

0 2 Submarines (SS)

This task Force criteria specified 3 combinations of ship

types as Follows:

0 2 CVA and 2SS

or

0 2 CVAN and 2SS

or

0 1 CVA and 1CVAN and 2SS

Figure 14. Test Problem #93
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Factor Code Assigned

1. Combination-specific logic 1 if used, otherwise 0

2. Decomposed-combination 1 if used, otherwise 0
logic

3. Combination-independent 1 if used, otherwise 0
logic

4. Other strategies 1 if used, otherwise 0
(e.g. mixed)

5. Reject erroneoJs ship types 1 if used, otherwise 0

6. Reject incorrect transiting 1 if used, otherwise 0
and stationing times

7. Comments 1 if one or more comments,
otherwise, 0

S. Parallel construction of 0 if no IF statements
IF statements have parallel construction;

1 if at least one pair,
but not all IF statements
have a parallel constru;-
tion; 2 if all IF statements
have a parallel construction

9. Use of a:Idition for logical 1 is used, otherwise 0
"OR" statements

10. Do Loop 1 if used, otherwise 0

11. Total number of factors Number
used

Note that parallel construction of IF statements refers to
IF statements on adjacent lines, spaced so that variables and logical
operators such as ".AND.", or ".OR." are arranged in columns
to give a neat, orderly presentation. Note, also, that addition can
be used to implement multiple "OR" functions. For example, the
statement "The number of CVA's and CVAN's must equal 2" can
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replace the logic statement "CVA. EQ.2 .OR. CVAN .EQ.2 .OR. (CVA
.EQ.1 .AND. CVAN .EQ.1)".

An analysis of the frequency of use of the individual strategies
was conducted. A correlation analysis among the eleven strategy fac-
tors was conducted. Finally, univariate and step-wise linear multi-
variate regression analyses were run using the eleven measures of
programming strategy for the independent variables and the three

;" performance measures (PC,• PIC, and PT) for the dependent variables. -

Results. Table 35 gives the usage means and standard de-
viations of the codes for each strategy factor. "Combination-independent"
strategy was used in 65 7 of the subroutines and thus was
the most favored strategy. "Decomposition of logic requirements"
was used in 22.5 % of the subroutines and was the second
most common strategy. "Comments," "combination-specific",
"other," and "Do logic" were used in less than 10 % of the
subroutines. Parallel construction of IF statements had a mean code
value of 1.11 , indicating that a moderate degree of parallel con-
struction was typical. Finally, the number of strategy and style
factors used in the average subroutine was 2.8, indicating that
almost 3 factors were typically used together in an "average"
subroutine.

-' Table 36 gives the cross-correlation coefficients for the
strategy and programming-style factors. Note that "combination-
independent strategy", the or most frequently used, was not
highly positively correlated with any other factor including "comments"
and "total number of factors used" suggesting that, when com-
bination-independent strategy was used, it was typically used alone
and without comments. Likewise, the strategy "decomposition of
combination logic", the second most frequently used strategy, was
apparently frequently used alone and without comments. Conversely,
the negative-logic factors "reject incorrect transiting and stationing
times" and "reject extraneous ship types" were frequently used
together (the correlation value was .476, although the correlation
had been expected to be closer to 1.0) along with "addition for
logical OR", and "comments".

Tables 37, 38, and 39 provide the results for tlie univariate
and multivariate regressions using P , P , e ,d PT, ro pectively,
for the dependent variables. Table 39 sho1wCs tJ 'igr ,antly
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Table 35

Strategy Use

Mean Standard Deviation
Comments .067 .250

Parallel Construction of 1.117 .769
IF Statements

Combination-Specific .058 .235

Decompose Combination Logic .225 .419

Reject Incorrect Transiting .308 .464
and Stationing Times

Comb ination-Independent .650 .479

Other .033 .180

Use Addition for .308 .464
Logical "OR"

Reject Extraneous Ship Types .317 .467

Use DO Loop .083 .278

Total Number of Factors 2.808 1.272
Used

Mean number of times the strategy, or programming-style,
factor was used.

** Mean value of assigned score (see code descriptions in .
Method section)

93.
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Table 37

Correlation/Regress ion Analyses:
Strategy Factors vs.

Probability of Accepting
Correct Ship-Combinations (Pc)

Independent Correla. Regre. Variance t-

Variable Coeff. Coeff. Explained Value Pt-

Univariate Regress ions

Combination .178 .341 3.2 1.96 .05

Specific

Combination -. 175 -. 165 3.1 -1,93 .05
Independent

DO Loop -. 125 -.203 1.6 -1.37 .1

Multi-variate Regression

Combination .178 .435 2.49 .01

Specific

DO Loop -. 125 -.309 -2.04 .025

Decompose .105 .133 1.36 .1

Combination 10.3

Logic

Other .100 .321 1.42 .1

Use of
Addition for .098 .124 1.37 .1
Logical OR

Analysis of Variance Table*

Sum Mean F-
Source Squares df Squares Ratio P_

Regression 2.48 5 .497 2.61 .05
Residue 21.72 114 .190
*Analysis of Variance Table for the Multi-Variate Regression
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ITable 38

Correlation/Regress ion Analyses:

UiaStrategy Factors vs
• Probability of Rejecting

CombIncorrect Ship-Combinations (P

I independent Correla. Regre. Variance t-
" Variable Coe fF. Coeff • Expl ained Value P

Oe2-4.2Univariate Regress ions

sComments .139 .154 1.9 1.53 .10

Reject incor-

rect trans iti.ng .177 .106 3.1 1.95 .05
& stationing

times

Combination- .162 .094 3.6 17 .05
-;-.-independent

Other -.286 -.440 8.2 -3.23 .001
iUse addition .190 .113 3.6 2.09 .025

for logical "OR"

Reject extran- .342 .203 1.7 3.95 .0005

*! eous ship types

Use DO loop .193 .193 3.7 2.13 .025

Total No. of .287 .062 82 3.25 .001
~factors used

AaMulti- variate Regression

Reject extran-
eous ship types quares d Sqars Rai .00

'-"Other -. 286J -. 403 -3.13 .001

Combination- -.099 -. 203 -2.04 .025
,specific 22.9g

Use DO Loop .193 157 1.84 .05
• Decompose

"'combination -. 104 -. 079 -1.43 .1

€ logic
Analysis ofVariance Table*

,"-Sum Mean F
l:'.Source Squares-dr Squares ---Ratio P__

Regress ion 2. 109 5 .421 6.78 .01
.;zRes idue 7.088 114 .062

*Analysis of Variance Table for the Multi-Variate Regression
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Table 39

Correlation/Regress ion Analyses:
Strategy Factors vs.

Probability of Correctly Accepting or
Rejecting a Ship-Combination(PT)

Independent Correla. Regre. Var iance t

Variable Coeff. Coeff. Explained Value P!

Univariate Regressions

Comments .169 .106 2.9 1.86 .05

Reject incor-
rect transiting .238 .080 5.6 2.65 .005

& stationing
times

Other -.264 -.230 7.0 -2.97 .0025

Use addition .317 .107 10.1 3.63 .0005

for logical "OR"

Reject extran- .401 .135 16.1 4.75 .0005

eous ship types
L

Use DO Loop .123 .069 1.5 1.34 .1

Total No. of .385 .047 14.8 4.52 .0005

Factors Used

Multi- variate Regression

Reject extran- .401 .105 3.65 .0005

eous ship types

Other -.264 -. 175 24.0 -2.45 .01

Use Addition for .317 .064 2.22 .025

Logical "OR"

Analysis of Variance Table*

Sum Mean F-

Source Squares dF Squares Ratio P.

Regress ion .707 3 .235 12.17 .01

Res idue 2.243 116 .019

*Analysis of Variance Table for the Multi-Variate Regression
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associated with PC in univariate regressions were the "combination-
specific" and "combination-independent" strategies as well as
"Do loop". "Combination-specific" was the only significant factor
positively correlated with PC. In the multivariate analysis,
"combination-specific", as well as "decompose combination logic,"
'other", and "use of addition for logical OR" were significantly
and positively correlated with P . "DO loop" was significant,
but was negatively correlated wih P 0 .

srtg The positive correlation of the "combination-specific"
strategy factor emphasizes the reliability of combination-based
logic. Its ability to account for only 3.2% of the variance (in the
univariate analysis) may be due to its use in only 6 % of the
subroutines. In contrast, "combination-independent" strategy,
which was negatively correlated with P and accounts for only
3.1% of the variance, was used in G of the sub-routines.

Table 38 reveals that many factors were significantly
correlated with "Reject extraneous ship types" appears
to have been the most important factor followed by "total number
of factors used" and "other". "Reject extraneous ship types" was
apparently used with a greater degree of success then was "reject
incorrect transiting and stationing times". "Comments", "use of
addition for logical OR", and "use DO loop" were also used
successfully for rejecting incorrect ship-combinations.

The multivariate regression presented in Table 38 re-
veals, in addition to the results reported above, that combination
oriented strategies, namely "combination-specific" and "decompose
combination logic", did not contribute positively to the successful
rejection of incorrect ship-combinations. These strategies are
classified as positive-logic strategies since they are used to
directly specify correct combinations -- the remaining combinations
being rejected as incorrect. Apparently, this was not completely
accomplished, so that frequent errors occurred in rejecting incorrect
combinations.

Table 39 gives the results of the univariate and multi-
variate analyses which used P as the dependent variable. Results
of the univariate analyses were similar to those for PIC, except
that the strategy "combination-independent" was not found to be
significant. The remaining factors found to be significant for P1 ,
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pwere also found to be significant for P T *Note that "other" and
"luse Do loop" showed increases in their correlations for the
same comparison. This reflected the common, successful use
of those strategy factors to both accept correct and reject in-
correct combinations.

Analysis 3: Demographic Factors and Performance

Purpose. To determine the relationships among the
participant demographic factors and the effect of those factors
on the completeness and accuracy of the Fortran IV code written
by the participants.

Method. A correlation analysis was performed for the
independent demographic variables. Univariate and step-wise
multivariate regression analyses were run using the demographic
and experience factors for independent variables and the three per-
formance measures (P , P,,, and P-,), described above, for the
dependent variables.

The demographic data were collected from the biographical
frms completed by each participant. -The fotlowirig categories were

used:
I1. Age,
2. Years-of-experience,
3. Years of-advanced-education (beyond high school),
4. Number of programs written,
5. Number of computer systems used,
6. Number of programming languages used,
7. Number of programming areas involved in

among the following:
a. Data entry
b. Production control
c. Operations
d. Applications programming
e. System programming
f. System analysis
g. Data base administration
h. Data communication
i. Other

199



Results. Results of the correlation analysis among the
independent variables are shown in Table 40. "Age" and "Years
of experience" were highly correlated and cannot be considered
indepenJent factors. Further, the "number of programming
areas involved in" was moderately correlated with "age", "years-
of-experience", "number of programs written", and "number of
systems used". -The "number of -;yst (3ms used" and the "number

of languages used" were moderately correlated.

Table 40

Correlation of Demographic Variables

No. of No. of No. of No. of
Exp. Educa. Prog. Systems Lang Areas

Age .851 -. 009 .322 .3flq .066 .574
Experience -.050 .436 .41 ) .139 .691

Education .058 -. 162 .106 -. 153

No. of Prog. .274 .325 .512

No. of Systems .446 .595

No. of Lang. .268

Tables 41, 42, and 43 provide the results of the regression

analyses for dependent variables P , P , and P , respectively.
"* All demographic variables were in~cudedlin the tables independent

of their statistical significance, because the inconclusive results
obtained for some variables were unexpected. For instance, note
that "years-of-higher-education", contrary to expectation, was
not found to be a statistically significant factor in univariate re-
gressions. Further, note that the "number of computer systems

"7 used" and the "number of programming languages used" were

highly correlated with P and, together with "years-of-higher-
education", predicted 34/o of the PC score variance. Also, these ;1

same factors, while positively correlated with P were negatively -

. correlated with P[C and PT.

IC T
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Table 41

Correlation/Regress ion Analysis: PC

]R Independent Correla. Regre. Variance t-

Variable Coeff. Coeff. Explained Value P19

Univariate Regressions

Age .126 .0033 1.6 .671 NS

Year's Exp. .148 .0051 2.2 .791 NS

Education .218 .0282 4.8 1. t83 NS

# Programs .090 .0001 .8 .478 NS

# Systems .457 .0523 20.9 2.719 .01
* Prog. Lang. .441 .0663 19.4 2.597 .01
* Prog. Areas .269 .0303 7.3 1.48 NS

Multi- variate Regression

Education .218 .0332 1.55 .1
* Systems .457 .0449 34.0 2.14 .025

* Prog. Lang. .441 .0359 1.31 .1

Analysis of Variance Table -

Sum Mean P
Source Square d' Square F-Ratio 19

Regression .512 3 .170 4.468 .05

Residue .993 26 .038

* Analysis of variance Table for multi-variate regression
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Table 42

Correlation/Regression Analysis: PIC

Independent Correla. Regre. Variance t-

Variable Coeff. Coeff. Explained Value P !_9

Univariate Regress ions

Age -.464 -.0100 21.5 -2.773 .005

Year's Exp. -.350 -.0099 12.2 -1.974 .05

Education .022 .0023 0.0 .117 NS

* Programs -.223 -.0002 5.0 -1.209 NS

* Systems -. 477 -. 0442 22.7 -2.868 .005
%# Prog. Lang. -. 111 -.0135 1.2 -.591 NS

# Prog. Areas -.541 -.0493 29.2 -3.402 .001

Multi- veriate Regression

Age -. 464 -.0137 -2.19 .025

Year's Exp. -. 350 .0169 40.4 1.82 .05

# Areas -. 541 -.0537 -2.81 .005

Analysis of Variance Table *

Sum Mean P ";

Source Square df Square F-Ratio 19

Regression .400 3 .1333 5.87 .001

Residue .590 26 .0226 L

*Analysis of variance Table for multivariate regression
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Table 43 ,

Correlation/Regress ion Analysis: PT

Independent Correla. Regre. Variance t-

Variable Coeff. Coeff. Explained Value P:

Univariate Regress inns

Age -.444 -.0059 19.7 -2.623 .01

Year's Exp. -. 304 -. 0053 9.2 -1.687 .05
Education .14B .0096 2.2 .792 NS
# Programs -. 208 -. 0001 4.3 1.127 NS
# Systems -. 250 -. 0143 6.3 1.368 .1
# Prog. Lang. .145 .0109 2.1 .776 NS
* Prog. Areas- 438 -. 0247 19.2 -2.580 .01

Multi- variate Regression

Age -. 444 -. 0087 -2.170 .025
Year's Exp. -. 304 .0103 38.3 1.732 .05

* Prog. Lang. .145 .0189 1.528 .1

* Areas -. 438 -. 030 -2.397 .01

Analysis of Variance Table"

Sum Mean P

Source Squaredf Square F-Ratio 15

Regression .145 4 .0362 3.88 .05

Residue .233 25 .0093

*Analysis of variance Table for multivariate regression
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PIC, the probability of rejecting incorrect ship com-

binations, was predicted by a different set of variables from those
that predicted P 0 . They were "age," "years-of-experience,"
and "number of programming areas." All three were negatively
correlated with PIC and together explained 40% of the variance.

The total probability, P_, was predicted by "age,"
] "~t It ,T, [

"'years-of-experience, number of programming languages used,"

and "number of programming areas involved in." Only "number
of programming languages used" was positively correlated with
PT .Note that there was a reduced correlation of these factors
with P compared to their respective correlations with P and

T IC
P' suggesting that their effects on P and P tended to cancelPC "c C
each other in the prediction of P

.. Analysis 4: Relationships Between Compiler-Detected Errors
and Performance Scores.

Purpose. To determine what relationships existed, if

any, between the compiler-detected errors (many of which, by
reflecting clear intent, were corrected and therefore did not directly
result in a performance decrement) and performance scores.

Method. A correlation analysis and univariate and step-

wise multivariate linear regression analyses were run using the
frequency of 14 types of errors as the independent variables and
the three performance measures as the dependent variables. The
14 error types consisted of 13 that were detected by the compiler
plus one additional variable, which was equal to the sum for each
participant of his non-zero error-types. This latter variable was
the count of the number of error-types that occurred in the partici-
pant's problem solutions i.e. in his subroutines. The error-types
were the following:

Index Number- Error-Type

1. Dotted-keyword error,
2. Variable exceeds 6 characters,

3. Continuation mark not in Col. 6,
4. Blank I ine,
5. Mtsspelled word,
6. Parenthesis error,
7. Missing statement,
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8. Statement starts in Col. 1-6
, e.9. Statement exceeds 80 characters,

10. Statement syntax error,
11. Wrong variable,

S12. Array-index error,
13. Fixed point/floating point error,

,~14. Sum of non-zero error types (1-13).

Results. The correlations between each error-type and
:7- the three performance scores are shown in Table 44. Note that

each error-type strongly correlated with P0C, i.e. with a correlation
greater than . 1 or less than -. 1, had a reverse polarity in its
correlation with Pic. Apparently, although the correlations in
general were weak, there was a tendency for some factors to be
positively correlated with P Cand negatively correlated with PlIC,
or vice versa.

Results for the univariate regressions and a step-wise
multivariate regression for each of the dependent variables Pc

P and PT are given in Tables 45, 46, and 47, respectively.
The error-types in the multivariate regressions have been listed
in the order of the amount of variance explained, starting with
the greatest.

The regressions for P suggest that associated with aL Chigh probability of accepting correct ship-combinations were the
absence of parentheses and syntax errors, and the presence
of variables exceeding six characters. (Note: excessively long

* variables were corrected before the subroutine test.) In con-
trast, the variables associated with the rejection of incorrect

* ~. ship-combinations were the absence of errors in the placement
- of continuation marks, the absence of statements begun in

Column 6 or less, and the absence of excessively long variables.
Also associated with the rejection of incorrect ship-combinations
were syntax and parenthesis errors.

While the percent of variance explained by the regressions-
was modest -- 14% for P and P and only 6% for P T-_ the

results suggest that teimybero-ndcesor associationsK that might be used to guide and refine the testing of a program
based on initial compiler-detected errors.
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Table 44

Correlation of Programming Error - Types

With Performance Measures

V,

Programming Correlation Correlation Correlation
Error With With With
Type PC PIC PT

Variable exceeds .152 -. 184 -. 111
6 characters,

Line exceeds .077 -.023 .042
80 characters

Cont. mark in .045 -.214 -.215

wrong column

Wrong variable .040 -.026 .008

Misspelled word -.003 -. 034 -.051

Statement start -. 038 -.074 -. 130

in Col. 1-6

Blank lines -. 039 .057 .052

Array-index -.053 -.011 -.060

error

Missing statement -.061 -.077 -. 141
Floating point/ -. 066 .046 -.012

fixed pt. error

Dotted-keyword -.080 -.005 -.081
error

Parenthesis error -. 180 .110 -.029

Total number of -.238 .016 -. 178

error types

Syntax error -.265 .168 -. 033
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Table 45

Compiler-Detected Programming Error-Types vs.

Probbilty f Aceptng orrct hip ombnatons(PC

Error Correla. Regre. Variance t
Type Coeff. CoelT. Explained Value P!

Univariate Regress ions

Syntax -. 265 -. 050 7.0 -2.99 .0025
Error

Number
of Error -. 238 -. 071 6)( --. 65 .05
Types

Paren-

theses -. 180 -. 035 3.2 -. 199 .025 I
Variable
Exceeds .152 .219 2.3 1.67 .05
6 Char.

Multi- variate Regression

Sytx -. 265 -. 044 -2.69 .005
Error

Paren-
theses -.180 -.053 -2.56 .01
Error

14

Wrong
Vaibe .040 .069 1.80 .05

Variable

Exceeds .152 .196 1.57 .
6 Char.
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Table 46

Compiler-Detected Programming Error-Types vs.

* Probability or Rejecting

Incorrect Ship-Combinations (PIC)

Error Correla. Regre. Variance

Type Coeff. Coeff. Explained Value P_5

Univariate Regressions

Cont. Mark
in Wrong -.214 -.021 4.6 -2.38 .01

Column

Variable

Exceeds -. 189 -. 167 3.6 -2.09 .05

6 Char.

Syntax .168 .019 2.8 1.85 .05

Error

Multi-variate Regression

Cont. Mark
in Wrong -.214 -.024 -2.71 .005

Column

Syntax

Error .168 .025 2.38 .01

Variable

Exceeds -. 189 -. 152 14.1 -1.97 .05

6 Char.

Statement
-. Starts in

Col. 6 -.074 -.014 -1.46 .1

or Less

Paren-

theses .110 .013 1.29 .1

Error
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Table 47

Compiler-Detected Programming Error-Tvoes vs.

Probability of Correctly Accepting or

Rejecting a Ship Combination (PT)

Error Correia. Regre. Variance t-

Type Coeff. Coeff. Explained Value P1

Univariate Regress ions

Cont. Mark
in Wrong -. 215 -.012 4.6 -2.39 .01

Column

No. of
Error -. 178 -. 018 3.2 -1.96 .05

Types

Missing -. 141 -. 034 2.0 -1.55 .1
Statements

Statement
Starts in
Col. 6 -. 130 -.007 1.7 -1.41 .1

or Less

Multi- variate Regression

Cont. Mark
in Wrong -. 215 -. 010 -1.95 .05
Column

6.2

No. of

Error -. 178 -.013 -1.42 .1
Types
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Discussion Experiment #6

General Comments on Coding Strategy

Which strategy is appropriate for selecting ship-com-
binations (or in general for selecting any set of factors) depends
on the nature of the problem being solved. (In the discussion
that follows, although we use the ship-selection terminology developed
for the experiment, the concepts apply to selection logic in general).
If, for instance, there are only a few ship-combinations that are acceptable
and many that are to be rejected, then using positive logic requires

fewer statements than using negative logic. Conversely, if there
are many ship-combinations to be accepted and only a few to be
rejected, then negative logic identifying the specific combinations
to be rejected requires the fewer statements.

An example of a positive-logic, combination-specific
strategy is the following. Suppose an acceptable ship-combination
for - ask force is 1 non-nuclear carrier (CVA) and 2 non-nuclear

submr-ines (SS). If there are 9 possible ship types on the ship-
list, then a positive -logic Fortran IV statement specifying the desired
combination would be:

If (CVA EQ. 1 .AND.
CVA .EQ. 0 .AND.
CA .EQ. 0 .AND.
CG .EQ. 0 .AND.
CGN .EQ. 0 .AND.
DD .EQ. 0 AND.
SS . EQ. 2 .AND.
SSN . EQ. 0 . AND.
AO .EQ. 0 .AND.) ACCEPT = TRUE.

Here all the variables are tested individually, since each variable,
i.e. each ship-type, is represented by an integer, which may be zero.

-* But it is not necessary to use only positive or negative
combination-specific logic. If a part of, or all of, the ship-com-
binations to be rejected or accepted can be specified in the same
manner for all combinations, then use of a combination- independent
strategy can significally reduce the specification-logic complexity.
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For instance, if, in the problem given above, all combinations
require only CVA's and SS's with all other ship types equaling
zero, then one negative-logic statement could be written to reject
all combinations with non-zero CVAN, CA, CG, CGN, DD, SSN,

" or AO's. The result would be a less complex positive-logic
statement for specifying those combinations which are acceptable.

Based on the above discussion, it should be apparent
that combination-specific positive or negative logic works at a level
of detail similar to that of example-solutions -- i.e. each combination

is treated both explicitly and independently of the other combinations.
If the participants in Experiment 6 had used a combination-spec ific;
strategy, we might have expected the same performance as obtained
in Experiment 1, where example-solutions to the same problems
were developed. But in Experiment 6 participants frequently

tended to use combination-independent logic 'in 65% of the ex-
periment problems). This combination- independent logic em-
ployed statements that were intended to be valid for all ship-

combinations. As a result, when correctly developed, the specifi-
cation of numerous ship-combinations could be simplified into a
few combination-independent logic statements. This simplification,
may account for the fact that problem-complexity was not a signifi-

cant factor in the experimental results. The poor performance
obtained in the experiment suggests that errors were made in I
translating the problem specificat.ions into comb inat ion-independent
logic. Thus, either combination-specific logic should have been
used or an aid, such as those used in Experiments 3 & 4, adapted
to organize statements, should have been developed and made
available.

The fact that the strategy-measures used to analyse
Experiment 6's data did not have the same performance-predictive
power as the strategy-measures used for Experiments 1-5 suggests

that sensitive measures were not identified. In fact, the strategy-
measures for Experiment 6 were not moment-to-moment measures,
but together represented only a way of classifying overall strategy. C

Obviously, a moment-to-moment measure for computer programming

(designing and coding) should be developed.

Performance Measures

The relationship between P and P P provides.T . C P1I roie
insight into a serious problem in classifying programmtng errors.

IIlA
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P can be considered one type of error, and P and P can be
T C IC

considered to be the elements in a decomposition of PT . (See
Equation 6). Yet, some of the strategy and programming-technique
factors that predicted P in a multivariate regression were different
from those that predicted P 1 0 " And,those that were the same in
both regressions could show different correlation polarities. For
example, "Do loop" was negatively correlated -. 125) with P t
but positively correlated (.193) with P . As a result, its

correlation (. 123) with P was reduceE. and it did not appear in
the multivariate regression for P . A similar result occurredTfor "coribination-specific," and the same tendency occurred

for "other," although "other" did not drop out of the regression
for R_. Similar results occurred when the demographic factors
were used as the independent variables. For instance, the

"number of programming languages used" and the "number of
operating systems used" were positively correlated with P
negatively correlated PIC and, as a result, only moderately
correlated with PT The point is that combining error
categories (such as "logical," "Data," etc.) as is usually done
for ease of data-classification and -collection purposes may lead
to serious analytical problems. For example, combining all errors
thought to be "logical" into one category -- e.g. the errors re-
sulting in the erroneous assignment of a ship-combination (mea-
sured by P- ) could be termed "logical" errors - can obscure
predictive relationships that actually exist in pot-t ions of the
error category. If, for instance, we had only used the category
of errors measured by P we would not have discovered that

"number of systems used' was an important factor in predicting
PC even though P was part of P

C T

We conclude, then, that error categories should be
selected with regard to their predicability. And two categories
should be combined only when their prediction (regression )
equations use the same independent variables (are homologous).
Furtherstudy of the mechanisms or conditions that result in
errors may permit definition of fundamental categories of errors.

Demographic Factors

Prediction of P. , P , and P using demographic
factors as the independent variales led To results somewhat
similar to those found for the same demographic factors in
Experiments 1-5. The "number of programming languages used"
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and "number of operating systems used" were positively correlated
and were significant predictors of PC. Also, the "number of
programming languages used" was a significant predictor of P
However, both were negatively correlated with P[. ApparentTy,
there was a fundamental difference in experience' iat differently
affected accepting correct items and rejecting incorrect items.

k' - Analysis and Comparison of Example-Solution
and Program-Code Errors

The purpose of the analysis presented in this section is
to compare the errors produced when specification of a problem
solution is accomplished in two different ways: by example-solu-
tions and by program code. Our underlying purpose is to gain
insight into why, under certain conditions, one problem-solution
specification method might be superior to the other.

Two types of errors were analyzed. One type, termed
an "error-of-omission", refers to an error that results in a
failure to accept a correct entity (ship-combination). When
specifying a problem solution with example-solutions, an error-
of-omission can be directly traced to a failure to enter an example
of a suitable entity (e.g. ship-type) or to an example-solution that
fails to properly establish the desired range of a variable (in the
experiment problem the desired range of transiting and stationing
times). There is a one-to-one correspondence between an error-
of-omission and the resulting logic error when using example-
solutions to specify a problem solution. But, when using program
code to specify the problem solution, there no longer exists a
simple one-to-one relationship between an error-of-omission
and the resulting logical error. Instead an erroneous statement
in the program code may result in multiple logic errors. In
either case, the probability of an error-of-omission (P F_ 0 )
equals one minus the probability of accepting an acceptable entity
(Pc). That is:

P 0= 1- P (7)PE-0 C-

The second type of error considered in this section is
termed an "error-of-commission." When example-solutions are
used to specify a problem solution, an error-of-commission j
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corresponds to the entry of an incorrect example into the processor
which is then treated by the processor as a correct example. An
error-of-commission results in erroneously accepting incorrect
entities (e.g. ship-combinations). Again, a one-to-one correspon-
dence between an error-of-commission and the corresponding
logical error does not exist when program code is used for specifying ,

a problem solution. In either case, the probability of an error-
of-commission (P equals one minus the probability of rejecting
an incorrect entitE-(x!l'C). That is:

-A.

PE-C =1 P1 C (3)

Analysis 1: Comparison of Errors-of-Omiss on For Example-
Solutions vs. Program Code

Purpose. To determine whether there was a significant

difference between the example-solution and the program-code
methods of specifying problem solutions for the probability of
an error-of-omission. (P

Method. The probability of an error-of-omission for

each of the nine experiment cells of Experiment 1 (where example-
solutions were used) was compared to the same probability for
the corresponding cells in Experiment 6 (where Fortran IV code
was used). Both participant groups in the analysis were experienced
programmers selected using identical criteria. A t-test was used
to determine the statistical significance of any differences.

Results. Table 48 gives the probability of an error-of-
omission (PE for Experiment 1 and Experiment 6. As indicated,
the only cell with a significant difference was A1 B., which cor-

responds to the least-complex problem in both experiments and to
processor-complexity Level B in Experiment 1 and to Mission-
Type 3 in Experiment 6. In each experiment, participants workinq
with this cell had to input the maximum amount of information for
that problem level. This cell also provides the only instance in
which participants clearly omitted fewer correct entries when
using example-solutions than when using program code to specify -

a problem solution. Otherwise, as shown by the insignificant

difference in the grand means for both experiments, no superiority
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"Table 48

Comparison of the Probability of an Error-6f-Omission*
for Example-Solutions vs. Prooram Code

Experiment #1 Data - Programmers

Problem-Complexity Levels
AI A2  A3

.167 .367 .342
B (.833) (.643) (.658)

L Processor-

Complexity .325 .381 .479
Level B (.675) (.619) (.521) Grand = .4402

Mean (.560)

.481 .702 .668

B (.519"*) (.298) (.332)

______CELL CODE:

Experiment #t Dat. -I 'r jr, nir-ners E- 0
Problem-Complexity Levls (P ) i

A A A
1 2 2 3

.246 .237 .335 t
1 (.754) (.763) (.665)

.511 .359 .476
Mission 2 (.489) (.741) (.524) Grand .490

Types Mean in(.510)

.859 .771 .704

3 (.141$) (.229) (.296)
;.I.

(Reproduced from Table 30)

Probability of an Error-of-Omission (P -0) = 1- probability
of accepting a correct entity (P

" *Difference statistically significant t (18)= 2.61, P< .01.
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could be demonstrated for one method over the other with respect
to errors-of-omission.

Note, too, that when example-solutions were used,
performance as measured by P Cdegraded as both problem-
complexity (Factor A) and the amount of information required per
ship-combination (Factor B, or processor-complexity) were in-
creased, but that, when program code was used, problem-com-
plexity did not result in a performance degradation. Instead, the
amount of information required (reflected by mission-type, which
was intended to be equivalent to Factor B in Experiment 1) became
the significant factors affecting performance.

-K Discussion. Apparently, for the range of problem-
complexities studied in this experiment series, there was little
difference in the effect of problem-complexity on errors-of-
omission between the two methods of specifying problem solutions.
However, the two methods contrasted markedly when the informa-
tion requirement (Factor B) was increased for the least complex
problem (A 1 ). Experiment 1, in which example-solutions were
used, showed only a moderate reduztion in performance; Experi-
ment 6, in which program code was written, showed a more drastic
performance degradation. This result indicates that, when pro-
blem-complexity (Factor A) is low and the amount of information
required/item (Factor B) is high, specification with example-
solutions may be superior to writing program code.

The data in Table 48 for program code suggest that the
amount of information required per item can significantly inzrease
the frequency of errors-of-omission. Apparently, to increase
performance, problem-solution designs should limit the amount
of information required per item when program code is being written.

Analysis 2: Comparison of Errors-of-Commission for Example-
Solutions vs. Program Code

Purpose. To determine whether there was a significant
difference between the example-solution and the program-code
methods of specifying problem solutions for the probability of
an error-of-commission (r

01
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Method. Since the ANOVA for P for Experiment 6

(Table 31) indicated that the experiment facitors (problem-corn-

plexity and mission-type) had no significant effects on P 1C, a

grand mean value for P was calculated. Since the same

findings were obtained FoIixperiment 3, where various feedback-

aid levels were used and whetre processor-complexity level B

was maintained over all the experiment cells, a grand mean for

P was likewise calculated. For Experiment 1, however, in

which performance significantly degraded for problem level A

the most complex, a mean was calculated only for data pertaining

to problem levels A and A.
.,2

'.* Results. As shown in Table 49, the mean probability

for an error-of-commission for the six cells of Experiment 1 that

excluded problem-complexity level A was .07. Apparently,

errors-of-commission increase when attempting to generate ex-

ample-solutions for problems whose complexity, as measured by

Halstead's E Metric (See Connelly et al., 1981), equals or exceeds

20,821 (i.e. at or above level A , where the mean value of PE-

was .35). In this correction, it is worth noting that the high

value of .18 for cell A B was traced to one individual who entered

9 example-solutions all 1 owhich were incorrect. Without this

individual, the mean value of P was .04.
E-C

A clearer picture was obtained for the probability of an

error-of-commission for participants engaged in the formation of

example-solutions from the data for Experiment 3, also shown in

Table 49. The grand mean value of P for Experiment 3,

for all cells, was .03. 

,-C

Finally, for Experiment 6, in which participants wrote

program code to specify solutions, the qrand mean value of

p was .177. The difference in tue jrand rnr,11_n values between~E-C
Experiment 3 and Experiment 6 was found to be significant, with

t(178) 143, and p - .0005.

Discussion. Comparison of the mean probabilities for

Experiments 1, 3, and 6 strongly suggests that the rate of errors-

of commission can be substantially. reduced by using example-

N solutions, rather than Fortran IV program code, for specifying

problem solutions. The 3 to 4 percent rate of errors-of-corn-

mission for example-solutions compares favorably with the 18

percent rate for program code.
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S Table 49

Comparison of the Probability of an Error-of-Commission *
for Example-Solutions vs. Program Code

- Experiment *1 Data - Programmers

Problem-Complexity Level

A A A
*1 2 3

* -*0.0 f..2
B (1.00) (.94 ) (368

1Mean for .07

cells ex- =(.93)
Processor .18 .03 .4,1 ctuding
Complexity B (.82) (.97) (.47) A

Level 23

0.0 .05 .41
B 3  (1.00) (.95) (.49)

CELL CODE:

Experiment #3 Data - Programmers PE-
(Processing Level 8-2)E C

(PIC
Problem-Complexity Level

A IA 2A3

F 0.0 0.0 .02
1 0i.00) 0i.00) (.98)

F.04 .02 .07 Gad .03
Feedback- F Gran

Ad 2 (.96) (.98) (.93) Mean)

Levels

F.04 .03 .01
3 (.96) (.97) (.99)

*Probability of an Error-of-Commission P E = I- probability
of rejecting an incorrect item(PI
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Table 49 (Concluded)

Comparison of the Probability of an Error-of-Commission*
for Example-Solutions vs. Proqram Code

Experiment #6 Data (PIC) - Programmers

A A A
1 2 3

.252 .192 .295
1 (.748) (.808) (.705)

Mission Grand .177
.112 .169 .137 M

Types 2 (.868) (.831) (.63) 823)

.092 .172 .175
" 3 (.908) (.828) (.825)

Comparison of the Mean Value
of P and P

E-C C

1. Mean for Experiment 1 over the 6 cells not .07
including problem-complexity level A (.93)

3
9. 2. Mean for Experiment I over the same cells,

but not including one participant whose per- = .04
formance was unusually poor. (.96)

3. Grand Mean for Experiment 3 .03
(97)*

4. Grand Mean for Experiment 6 .177
(.823)*

*Statistically significant difference

t (178)= 143, P ..0005
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The rate of errors-of-commission when using example-
solutions increased sharply, based on Experiment I's data (Table 49),

at a problem-complexity level near 20,821, as measured by Halstead's

E Metric. Given a suitable environment of feedback-aid, however,

as in Experiment 3, this degradation of performance did not occur.

Furthermore, cells in Experiment 3 with common experimental

conditions in Experiment 1, i.e. at processor-level B and feedback-

aid level F 1 , did not exhibit a degradation of performance for the

most complex problem. Apparently, when using example-solutions,

the instructions for using the feedback-aids and actual practice in

using the aids on problems of low and intermediate complexity had

the effect of reducing the rate of errors-of-commission on problems

where, without the aids, performance had previously deteriorated. L.

We can form three hypotheses concernng the superior

performance of the example-solution method:

1. It is working with examples and dealing with each
individual combination of items one-at-a-time that
results in a low rate of errors-of-commission.

2. It is the specification of each combination one-at-a-

time that is important. Consequently, if computer
programs were developed to specify each solution-
combination one-at-a-time, the rate of errors-of-
commission would be low.

3. The success of the example-solution method is due,
in part, to the transformation of example-solutions
from one logic-form into another, such as into the
ship selection logic (SSL) or into several forms,
such as the feedback-aids. Thus, it is the trans-
formation of logic, which enables the user to view
the problem in more than one way, that results in
a low rate of errors-of-commission. Consequently,
if program code entered by the user were trans-
formed into a different logic-form (say, a different
ordering of nested DO loops, or a complete specifi-
cation of combinational forms, or structured vs.
unstructured or combination-specific vs. combina-
tion-independent logic, etc.) and fed back to the user
for approval, a low rate of errors-of-commission
would be obtained.

1.20
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These hypotheses are not alternative hypotheses - all
could be true. We have strong evidence that the first hypothesis is
true. If the second is true but not the third, program design and
coding methods could be adapted to a more combination-dependent
structure. And finally, if hypothesis 3 were found to be true, pre-
compilation aids could be designed to convert the user's program
code into another form (while maintaining the same program logic)
for feedback to the user.

- In a previous section regarding a programmer's knowledge
of multiple programming languages and multiple operating systems,
it was suggested that knowledge of, or ability to develop, alternative

* ways of viewing problems may be a key underlying concept. This
same concept applied here to developing an alternative logic-form
for program code suggests that hypothesis 3 might offer a means
to reduce errors-of-commission not only in computer code but also
in other software areas, such as requirements specifications and

* . test-data generation.
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p CONC LUSIONS

1. Specifying a problem solution with example-solutions
(working in conjunction with an inductive processor to convert ex-
amples into the implied logic) results in an error-of-omission rate
approximately the same as the rate obtained when specifying a

M problem solution with Fortran IV program code. A significant
improvement in the rate of errors-of-commission, however, does
result when example-solutions, not Fortran IV program code,
are used to specify problem solutions. (An error-of-omission
is an error that results in failure to accept a correct entity. An
error-of-commission results in failure to reject an incorrect
entity). Thus, example-solutions can be used to specify accurate
and complete problem solutions provided that suitable inductive
logic is employed.

2. Without feedback aids, there appears to be an upper
limit of problem complexity (20,821 as measured by Halstead's E
Metric) above which large rates of errors-of-commission occur
when using example-solutions to specify a problem solution. The
use of appropriate feedback aids, however, either eliminates that
limit or extends it beyond the complexity of the problems used
in this series of experiments.

3. Feedback aids, to support the use of example-solutions
to specify problem solutions, should include the logic implied by
the example-solutions as well as suggested new example-solutions
required to complete the logic patterns suggested by the existing
set of example-solution. For instance, if example solutions AB,
AB, and AB have already been entered, the next solution which
completes the logic pattern is AB.

4. Feedback-aids that include an ordered listing of all
present solutions also support high performance. Even so, the
predictive measure referred to above is preferred.

L 5. Both feedback-aid types referred to above assist
in improving the rate of errors-of-omission for both programmers
and non-programmers who would not perform well without the
aids.
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6. Performance measures designed to detect possible
performance improvement with feedback aids should be relative
measures which indicate the difference between performance on
a common problem and each experimental problem. A relative
measure is required because initial variance among participants
is expected to be greater than variance improvement with the
aids, i.e.. users who need the aids but won't or can't use
them (and therefore will exhibit poor performance) will not be
affected by the aids. Only those who would not perform well
without the aids and who use them will exhibit improved performance
with the aids. Thus, the aids will influence performance of only
a portion of the user population, and only a measure with a suitable
sensitity (such as a relative measure) can detect such performance
improvement.

7. The lack of a strong relationship between "years-of-
higher-education" or "years -of-experience" and performance coupled
with the strong relationships between performance and "number of
computer languages" known and "number of operating systems" used
suggests that education and experience should not be used as they

have been in the past for hiring, promoting, determining salary
levels, and making assignments. InStead, the number of computer
languages known and the number of operating systems used, which

are better performance predictors, should be used until the true
underlying factors included in each are discovered.

83. Apparently, the depth of an individual's experience
is not as important to performance as is the breadth of his ex-
perience. Evidence supporting this notion includes the result that
the "number of programming languages used to code 10 or more
programs"~ was not as significant a performance predictor as
the "number of languages used to code at least I program."
Further, the lack of significance of the "number of software
application-areas experienced" supports the notion that, in
themselves, software application areas do not broaden problem-
solving capability.

9. There is strong evidence that the "number of pro-
gramming languages" and "number of operating systems" used
represent substantially different performance prediction factors,
and do not represent the same performance- influencing factor(s)
measured in two ways. Thus, there is apparently a set of under-
lying factors that affect performance embedded in these systems-
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p experience areas. There may exist other experience-areas that
* also affect performance.

10. A possible common, underlying, experience-related
factor is the ability to view problems from alternative viewpoints -

the ability to develop alternative approaches to problems -- an
ability that might be enhanced as more programming languages
and operating systems are learned.

I1I. The performance-prediction capability of strategy

'I

measures, developed as moment-to-moment measures, not only
clearly demonstrated that systematic strategies were used by

,. successful participants, and not only led to the design of the

feedback aids, but also convincingly demonstrated that moment-I
to-moment measures provided the sensitivity to explain considerable
performance variance (approximately 60 N in Experiments

1 thru 4).

*) 12. When modifying initially incorrect example-solutions,
the probability (.934) of maintaining an initially correct example-
solution was approximately the same as the probability of develop-
ing a new, correct example-solution. But, the mean probability

of detecting and correcting an erroneous example-solution was
low (.650). Further, the probability of detecting and correcting
an erroneous example-solution was negatively correlated with the

initial number of correct example-solutions. Apparently, the
fewer the total number of errors the less was the likelihood of
detecting a given error. This suggests that a method for in-
creasing the probability of detecting errors is to seed errors,
unknown to the individual reviewing the exampt le-solutions (or
compowter program) but otherwise recorded, to increase the rate
of error detection and therefore to increase the probability of
detecting an unrecorded error.

13. Strategies used by successful individuals in re-
vising example-solutions are apparently different from successful
strategies used for developing original example-solutions. Further,
aids designed to assist production of original solutions do not help
in revising solutions. Successful strategies and aids for revision
are yet to be determined.
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14. Participants developing Fortran IV code tended to

Uuse combination-independent logic, i.e. attempted to form logic
statements involving a subset of the problem variables that were
true for all or at least most of the ship-combinations required.
This approach could simplify the logic if implemented correctly;
but, in these experiments, many errors were made converting
the combination-specific logic of the problem statement to com-
bination-independent logic.

15. Compiler-detected errors in Fortran IV code,
as well as strategies- and programming-stlye factors, were used
as independent variables in regression analyses and explained a

moderate percent of the performance variance for errors-of-
,,..: omission and-commission. Thus, elements of these factors, which

are automatically measurable by computer processing of program
code, could be used to estimate the number of undetected errors-
of-omission and-commission in the program code.

16. Software error-categories are typically defined
'. expressly to facilitate data collection and recording. However,

our analysis of software errors showed that, when an error-
category was decomposed into sub-categories (e.g. the total
probability of error into errors-of-omission and -commission)

the independent variables in the prediction (regression) equations
changed. Some independent variables that were significant pre-
dictors of sub-categories of performance, such sub-categories
as errors-of-omission or -commission, were not significant
predictors of the combined performance factor "total logical

error." This result was found for each set of independent variables
studied: demographic, strategy, program-style, and compiler-
detected errors. If only the combined error cite 3ory "total
logical error" had been used, relationships amoe'i (and possibly
causes of) the component errors would not be known. Consequently,
possible solutions would not be known. It is concluded, therefore,

L that software error-categories should be selected with regard to
predictability as well as data collectability. Two categories should

tV be combined only when their prediction equations are homologous,
i.e. have the same independent variables. Possibly, a study of
errors mechanisms or conditions that result in errors may permit

'Q: definition of fundamental error categories, which would facilitate
the collection, analysis, and correction of errors.
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17. The superior performance (tower rate of errors-
of-commission) achieved when using example-solutions and in-
ductive processing to specify problem solutions over the perfor-
mance achieved when using Fortran IV code may provide a basis
for determing the underlying mechanism for that success and a
means for incorporating that mechanism into program designing-
and coding-aids. Apparently, superior performance was obtained
either because each combination of the input variables was treated
individually and/or because the example-solutions were transformed
into another logic form - namely, the ship selection logic (SSL).
If the former is a significant factor, then the feedback-aids
described in this report should be adapted to program designing-
and coding-aids. If the latter is a significant factor, then design-
and code-aids should be developed to transform the logic provided
by the user into another form which is then fed back to the user for
his review. For instance, the user's program code might be
transformed into a code with a different, but equivalent, logical
structure. Alternatively, the transformation might present the
program's equivalent logic to the user for review.

RECOMMENDATIONS FOR FURTHER RESEARCH

1. T[he strategy-measures used to zn flyse program code
in Experiment 6 were not moment-to-moment measures. Instead,
they were a classification of types of possible strategies. The
predictive power of the measures was moderate compared to
the strategy-measures used to evaluate performance in developing
example-solutions. It is suggested that moment-to-moment

" - strategy-measures be developed for both program-design and
program-code tasks.

2. Feedback-aids designed to support development of
original example-solutions were found not applicable to the re-
vision of erroneous example-solutions. Since the use of example-
solutions is an effective way to specify problem solutions and,
further,may reveal ways of improving program design and code,
successful revision-strategies should be identified, and revision-
aids should be derived from those strategies.

3. The "number of programming languages" known and
the "number of operating systems" used have been shown to be
good predictors of performance both for developing example-
solutions and for writing program code. It is suggested that the
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ability to develop alternative approaches may be a common factor
which may be enhanced by learning new languages and systems,
and which may be a key performance factor. Further, it is
suggested that breadth of experience is more important than depth
in specifying complete and accurate problemin. Whatever
the fundamental factors truly are, however, they need to be
determined not only to aid in selecting programmers, but also to
develop programmer and user training programs.

4. It is suggested that error-detection probability may
be a function of a base-line error detection rate and, therefore,,
that seeding errors unknown to the individual checking the material
may increase the probability of detecting an unseeded error. This
conjecture should be subjected to experimental tests to determine
whether seeding improves performance, and, if so, the frequency
and type of seed-errors that should be used.

5. The issue of the basis for the superior performance
of example-solutions needs to be addressed and resolved. As
indicated in Conclusion #17 above, the concept of writing program
code for each combination of factors (or the use of aids to auto-
matically transform combination- independent Incgic into combin-
ation - dependent logic) and the transforming of the code written
into alternate logical forms for feedback to the user for approval
needs to be tested in an experimental environment. There is a
potential here for substantially increasing the correctness of
computer programs if the superior, almost error-free perfor-
mance with example-solut ions can be transferred to writing
program code.

6. Independent of the methods for improving performance
in writing program code suggested in Item 5 above is the concept
of a language that combines general statements written in program
code with redundant example-solutions, not as part of a program
test, but, instead, as part of the program development so that the
example-solut ions may be inductively transformed into alternative

* code. A pre-compiler would produce actual code from both sources.
Potential performance with such a language would benefit from the
best properties of user-written code and user-generated examples.
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